Volume 48 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
LI Zhihai, LIU Zhixiang, XIE Miao, et al. Error modeling and analysis of alternating measurement mode roadheader positioning system[J]. Industry and Mine Automation,2022,48(1):7-15.  doi: 10.13272/j.issn.1671-251x.2021060015
Citation: LI Zhihai, LIU Zhixiang, XIE Miao, et al. Error modeling and analysis of alternating measurement mode roadheader positioning system[J]. Industry and Mine Automation,2022,48(1):7-15.  doi: 10.13272/j.issn.1671-251x.2021060015

Error modeling and analysis of alternating measurement mode roadheader positioning system

doi: 10.13272/j.issn.1671-251x.2021060015
  • Received Date: 2021-06-05
  • Rev Recd Date: 2022-01-10
  • Publish Date: 2022-01-20
  • The alternating measurement mode roadheader positioning technology will produce cumulative measurement error in the process of multiple alternating measurement, which will affect the positioning precision of roadheader. At present, the research mainly focuses on the causes of single measurement error, error distribution law and error reduction methods, but there is no research results on the error distribution law of multiple alternating measurement. By analyzing the working principle and positioning process of alternating measurement mode roadheader positioning system, the positioning error model of roadheader is established. The accuracy of the error model is verified by the graphic method, and the results show that the positioning errors obtained by the graphic method and the error model are basically the same, and and there are only 10−3 orders of magnitude errors between them. The impact of angle measurement error, distance measurement error, moving step length and distance between the roadheader and measuring platform on roadheader positioning error is studied by error model. The results show that the larger the angle measurement error, the larger the curvature of the positioning error curve, that is, the faster the error grows. And the YT axis positioning error grows faster than the XT axis. The distance measurement error has a greater impact on the XT axis positioning error, and the smaller the distance measurement error, the smaller the initial XT axis positioning error. However, the error change speed is not affected. As the moving step length increases, the YT axis positioning error curvature increases, that is, the YT axis positioning error growing speed increases. The impacts of the distance between the roadheader and measuring platform and the moving step length on roadheader positioning error are basically equivalent. The orthogonal test method is used to analyze the impact degree of each factor on the positioning error of roadheader. The results show that the distance measurement error has the greatest impact on the positioning error of the XT axis, followed by the angle measurement error. The moving step length and the distance between the roadheader and the measuring platform have the smallest impact and the two have the same degree of impact. The angle measurement error has the greatest impact on the positioning error of the YT axis, followed by the moving step length and the distance between the roadheader and the measuring platform, and the impacts of the two are the same. The impact of the distance measurement error is the smallest. The range analysis method is used to obtain the optimal parameter combination to reduce the positioning error.

     

  • loading
  • [1]
    杨健健, 张强, 吴淼, 等. 巷道智能化掘进的自主感知及调控技术研究进展[J]. 煤炭学报,2020,45(6):2045-2055.

    YANG Jianjian, ZHANG Qiang, WU Miao, et al. Research progress of autonomous perception and control technology for intelligent heading[J]. Journal of China Coal Society,2020,45(6):2045-2055.
    [2]
    刘治翔, 谢苗, 谢春雪, 等. 截割机构延迟特性对巷道断面成型精度影响分析[J]. 煤炭学报,2020,45(3):1195-1202.

    LIU Zhixiang, XIE Miao, XIE Chunxue, et al. Effect of delay characteristics of cutting mechanism on forming accuracy of roadway section[J]. Journal of China Coal Society,2020,45(3):1195-1202.
    [3]
    杨文娟, 张旭辉, 马宏伟, 等. 悬臂式掘进机机身及截割头位姿视觉测量系统研究[J]. 煤炭科学技术,2019,47(6):50-57.

    YANG Wenjuan, ZHANG Xuhui, MA Hongwei, et al. Research on position and posture measurement system of body and cutting head for boom-type roadheader based on machine vision[J]. Coal Science and Technology,2019,47(6):50-57.
    [4]
    邓国华. 基于激光导向器的悬臂式掘进机位置姿态自动测定方法[J]. 工矿自动化,2009,45(9):20-23.

    DENG Guohua. An automatic detecting method for position and posture of boom-type roadheader based on laser guide[J]. Industry and Mine Automation,2009,45(9):20-23.
    [5]
    刘宇, 陈根林, 刘永忠. 煤矿全断面掘进机捷联惯导曲线测量系统[J]. 工矿自动化,2019,45(8):65-69.

    LIU Yu, CHEN Genlin, LIU Yongzhong. Strapdown inertial navigation curve measurement system of full-section roadheader in coal mine[J]. Industry and Mine Automation,2019,45(8):65-69.
    [6]
    田原. 基于零速修正的掘进机惯性导航定位方法[J]. 工矿自动化,2019,45(8):70-73.

    TIAN Yuan. Inertial navigation positioning method of roadheader based on zero-velocity update[J]. Industry and Mine Automation,2019,45(8):70-73.
    [7]
    贾文浩, 陶云飞, 符世琛, 等. 悬臂式掘进机位姿检测方法研究进展[J]. 煤炭科学技术,2016,44(增刊1):96-101.

    JIA Wenhao, TAO Yunfei, FU Shichen, et al. Research advances on position and attitude measuring methods of boom-type roadheader[J]. Coal Science and Technology,2016,44(S1):96-101.
    [8]
    符世琛, 李一鸣, 杨健健, 等. 基于超宽带技术的掘进机自主定位定向方法研究[J]. 煤炭学报,2015,40(11):2603-2610.

    FU Shichen, LI Yiming, YANG Jianjian, et al. Research on autonomous positioning and orientation method of roadheader based on ultra wide-band technology[J]. Journal of China Coal Society,2015,40(11):2603-2610.
    [9]
    吴淼, 贾文浩, 华伟, 等. 基于空间交汇测量技术的悬臂式掘进机位姿自主测量方法[J]. 煤炭学报,2015,40(11):2596-2602.

    WU Miao, JIA Wenhao, HUA Wei, et al. Autonomous measurement of position and attitude of boom-type roadheader based on space intersection measurement[J]. Journal of China Coal Society,2015,40(11):2596-2602.
    [10]
    贾文浩, 陶云飞, 张敏骏, 等. 基于iGPS的煤巷狭长空间中掘进机绝对定位精度研究[J]. 仪器仪表学报,2016,37(8):1920-1926. doi: 10.3969/j.issn.0254-3087.2016.08.025

    JIA Wenhao, TAO Yunfei, ZHANG Minjun, et al. Research on absolute positioning accuracy of roadheader based on indoor global positioning system in narrow and long coal tunnel[J]. Chinese Journal of Scientific Instrument,2016,37(8):1920-1926. doi: 10.3969/j.issn.0254-3087.2016.08.025
    [11]
    杜雨馨, 刘停, 童敏明, 等. 基于机器视觉的悬臂式掘进机机身位姿检测系统[J]. 煤炭学报,2016,41(11):2897-2906.

    DU Yuxin, LIU Ting, TONG Minming, et al. Pose measurement system of boom-type roadheader based on machine vision[J]. Journal of China Coal Society,2016,41(11):2897-2906.
    [12]
    刘治翔, 王帅, 谢苗, 等. 截割头几何因素影响下的巷道表面形貌特征与建模[J]. 中国机械工程,2020,31(21):2583-2591. doi: 10.3969/j.issn.1004-132X.2020.21.009

    LIU Zhixiang, WANG Shuai, XIE Miao, et al. Characteristics and modeling of roadway surface topography under influences of cutting head geometry[J]. China Mechanical Engineering,2020,31(21):2583-2591. doi: 10.3969/j.issn.1004-132X.2020.21.009
    [13]
    李旭, 顾永正, 吴淼. 基于微分几何的掘进机工作机构运动学分析[J]. 煤炭学报,2016,41(12):3158-3166.

    LI Xu, GU Yongzheng, WU Miao. Kinematics analysis of roadheader's working mechanism based on differential geometry[J]. Journal of China Coal Society,2016,41(12):3158-3166.
    [14]
    GENG Tao, MENG Qingfeng, WANG Nan, et al. Experimental investigation of film pressure distribution in water-lubricated rubber journal bearings[J]. Proceedings of the Institution of Mchanical Engineers,2014,228(4):397-406. doi: 10.1177/0954411914530104
    [15]
    陶志刚, 朱淳, 何满潮, 等. 基于正交设计的露天矿V形槽结构滚石防护试验[J]. 煤炭学报,2017,42(9):2307-2315.

    TAO Zhigang, ZHU Chun, HE Manchao, et al. Test of V shaped groove structure against rockfall based on orthogonal design[J]. Journal of China Coal Society,2017,42(9):2307-2315.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Article Metrics

    Article views (120) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return