TIAN Jie, YIN Xiaoqi, WEN Yicheng. Method of cutting trajectory planning of roadheader based on hybrid IWO-PSO algorithm[J]. Industry and Mine Automation, 2021, 47(12): 55-61. doi: 10.13272/j.issn.1671-251x.2021050018
Citation: TIAN Jie, YIN Xiaoqi, WEN Yicheng. Method of cutting trajectory planning of roadheader based on hybrid IWO-PSO algorithm[J]. Industry and Mine Automation, 2021, 47(12): 55-61. doi: 10.13272/j.issn.1671-251x.2021050018

Method of cutting trajectory planning of roadheader based on hybrid IWO-PSO algorithm

doi: 10.13272/j.issn.1671-251x.2021050018
  • Received Date: 2021-05-10
  • Rev Recd Date: 2021-11-26
  • Publish Date: 2021-12-20
  • In order to solve the problems of low accuracy and large loss of heading equipment in cutting trajectory planning method of roadheader, a cutting trajectory planning method of roadheader based on hybrid IWO (invasive weed optimization)-PSO (particle swarm optimization) algorithm is proposed. The cutting section environments are divided into three types, namely single gangue, double gangue and multi-gangue, and the corresponding sections are rasterized and the grid map is established. The irregular gangue is expanded by using binary expansion method. The hybrid IWO-PSO algorithm is used for trajectory planning in the three types of section environments. The hybrid IWO-PSO algorithm is based on the seed diffusion method in IWO algorithm, which diffuses the initial population and allows all individuals to reproduce freely before competitive exclusion, thus effectively ensuring the diversity of optimization space. The position iterative update method in PSO algorithm is also used to iteratively update the reproduced seed positions, and the particle positions are adjusted in time by using group experience and individual experience to improve the optimization depth and speed of the algorithm effectively. The simulation results show that the length of cutting trajectory, the number of secondary excavation grids and the cutting energy consumption of the roadheader based on the hybrid IWO-PSO algorithm are smaller than those of the standard PSO algorithm, and the capability to avoid the obstacle and gangue is better than that of the standard PSO algorithm. The section cutting test is carried out by EBZ135 roadheader, and the results show that the maximum errors of the left side, right side and both sides of the roadway section forming are 30, 20 and 50 mm respectively, and the relative error is within 2%, 1.4% and 1.7% respectively, which can meet the requirements of effective obstacle avoidance and forming under different roadway section environments.

     

  • loading
  • [1]
    王国法.加快煤矿智能化建设推进煤炭行业高质量发展[J].中国煤炭,2021,47(1):2-10.

    WANG Guofa.Speeding up intelligent construction of coal mine and promoting high-quality development of coal industry[J].China Coal,2021,47(1):2-10.
    [2]
    姜潍.煤炭开采过程中的安全管理问题及策略[J].煤炭技术,2012,31(5):261-262.

    JIANG Wei.Safety management problems and strategies in coal mining process[J].Coal Technology,2012,31(5):261-262.
    [3]
    葛世荣,郝雪弟,田凯,等.采煤机自主导航截割原理及关键技术[J].煤炭学报,2021,46(3):774-788.

    GE Shirong,HAO Xuedi,TIAN Kai,et al.Principle and key technology of autonomous navigation cutting for deep coal seam[J].Journal of China Coal Society,2021,46(3):774-788.
    [4]
    WANG S,MIAO W.Cutting trajectory planning of sections with complex composition for roadheader[J].Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2018,233(4):1441-1452.
    [5]
    WANG F,GAO Y,ZHANG F.Research on trajectory tracking strategy of roadheader cutting head using ILC[C]//Proceedings of the 2015 Chinese Intelligent Systems Conference,Berlin,Heidelberg:Springer,2016:35-44.
    [6]
    刘若涵,刘永立.栅格法与Dijkstra算法的掘进机截割轨迹规划[J].黑龙江科技大学学报,2021,31(1):60-67.

    LIU Ruohan,LIU Yongli.Cutting trajectory planning of cantilever roadheader based on grid method and Dijkstra algorithm[J].Journal of Heilongjiang University of Science and Technology,2021,31(1):60-67.
    [7]
    夏煌煌.基于蚁群算法的煤矿巷道断面成型轨迹规划方法[D].徐州:中国矿业大学,2020.

    XIA Huanghuang.Trajectory planning method of forming a section in coal mine roadway based on ant colony algorithm[D].Xuzhou:China University of Mining and Technology,2020.
    [8]
    GHTHWAN A S,AL-HAYDER A A,HASSOONI A S.Hybrid IWOPSO optimization based marine engine rotational speed control automatic system[J].International Journal of Electrical and Computer Engineering,2020,10(1):840.
    [9]
    ALSAIF H,KAHOULI O,BOUTERAA Y,et al.Power system reconfiguration in distribution network for improving reliability using genetic algorithm and particle swarm optimization[J].Applied Sciences,2021,11(7):3092.
    [10]
    WANG Y,WANG Q,ZHANG H,et al.Improved particle swarm optimization algorithm for optimization of power communication network[J].International Journal of Grid and Distributed Computing,2016,9(1):225-236.
    [11]
    李著成,黄祥林.采用位置混沌重构的入侵杂草优化在盲源分离的应用[J].计算机应用研究,2020,37(2):477-480.

    LI Zhucheng,HUANG Xianglin.Application of invasive weed optimization based on location chaos reconstruction to blind source separation[J].Application Research of Computers,2020,37(2):477-480.
    [12]
    杨雨佳,神显豪,刘珊珊,等.基于入侵性杂草优化的机械手逆向运动学求解[J].济南大学学报(自然科学版),2021,35(3):265-270.

    YANG Yujia,SHEN Xianhao,LIU Shanshan,et al.Inverse kinematics solution of manipulators based on invasive weed optimization[J].Journal of University of Jinan(Science and Technology),2021,35(3):265-270.
    [13]
    田劼,王红尧,吴淼.掘进自动截割成形控制系统动态特性分析[J].工矿自动化,2015,41(6):40-44.

    TIAN Jie,WANG Hongyao,WU Miao.Dynamic characteristics analysis of automatic cutting and profiling control system for roadheader[J].Industry and Mine Automation,2015,41(6):40-44.
    [14]
    王苏彧,田劼,吴淼.纵轴式掘进机截割轨迹规划及边界控制方法研究[J].煤炭科学技术,2016,44(4):89-94.

    WANG Suyu,TIAN Jie,WU Miao.Study on cutting trace planning of longitudinal roadheader and boundary control method[J].Coal Science and Technology,2016,44(4):89-94.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (98) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return