TANG Jiebing, JU Wenjun, CHEN Fabing. Analysis and prevention of impact damage in deep goaf roadway under dynamic and static load[J]. Industry and Mine Automation, 2021, 47(11): 88-94. doi: 10.13272/j.issn.1671-251x.2021030071
Citation: TANG Jiebing, JU Wenjun, CHEN Fabing. Analysis and prevention of impact damage in deep goaf roadway under dynamic and static load[J]. Industry and Mine Automation, 2021, 47(11): 88-94. doi: 10.13272/j.issn.1671-251x.2021030071

Analysis and prevention of impact damage in deep goaf roadway under dynamic and static load

doi: 10.13272/j.issn.1671-251x.2021030071
  • Received Date: 2021-03-22
  • Rev Recd Date: 2021-08-29
  • Publish Date: 2021-11-20
  • The existing research on rock bursts in goaf roadway mainly focuses on the static load caused disaster.However, there is few research on the dynamic load superimposed disaster mechanisms based on static load.In terms of the dynamic load stress wave response of the surrounding rock of the roadway, the damage mode of the roadway is not related with the stress wave disturbance and its mechanical effects.In order to solve this problem, taking 3-1103 working face in Ordos mining area, Inner Mongolia as the research object, the study analyzes the impact damage characteristics of the goaf roadway and the dynamic and static load sources of the rock burst.The goaf roadway is under the 'F' type overburden rock structure on the side of the goaf, and the source of static load is the superimposed stress field of the lateral concentrated support stress and the advanced mining concentrated support stress of the working face.The source of dynamic load is the initial pressure of the basic roof, periodic pressure and the near-field mine earthquake formed by the square area break and the far-field mine seismic release energy.The combined effect of dynamic and static load under the impact roof rock layer can easily induce impact disaster in roadways with different stress fields under high ground stress and stress concentration.The FLAC3D numerical simulation method is used to analyze the stress state of the impact roadway under the dynamic and static load sources of the goaf roadway and the impact of the stress wave of the mine earthquake, and to verify and analyze the field impact damage characteristics in comparison.The numerical simulation results have a strong consistency with the field damage characteristics.During the goaf compaction process, the maximum vertical concentrated stress is transferred from the coal pillar to the side of the roadway side, and the bolt axial force shows an asymmetrical distribution state.During the dynamic load process, the principle stress difference of the roadway surrounding rock is repeatedly loaded and unloaded, the peak particle velocity(PPV)value of the stress wave on the front wave side is larger than that on the back wave side.The shallow stress wave of surrounding rock is reflected and superimposed, the PPV value is consistent with the maximum displacement of the shallow part of the surrounding rock after dynamic load.The surrounding rock of the goaf roadway forms the difference in stress field between the side of the roadway and the coal pillar side as well as the difference in dynamic load stress field in the process of dynamic and static load.According to the damage characteristics of goaf roadway under dynamic and static load and the results of its numerical simulation and validation analysis, the separate source prevention and control measures of static load decompression and load reduction, dynamic load earthquake reduction and energy dissipation are formulated.The measures are roof hydraulic fracturing, roof and floor blasting decompression, decompression of large-diameter boreholes of roadway and reinforcement of roadway surrounding rock.These measures are used to prevent the accumulation of elastic energy of thick and hard roof, weaken the amplitude of stress wave, and improve the surrounding rock stress environment.After taking pressure relief measures, the measured microseismic energy is released in the form of small energy level and multiple frequency.The total microseismic energy is reduced by 49.2% compared with that before pressure relief, the proportion of microseismic small energy events below 103 J increases from 75% before pressure relief to 89%, the static load of the field roadway surrounding rock is reduced, and there was no sudden change of stress when dynamic and static load are superimposed, which has proved the effectiveness of impact prevention and control measures.

     

  • loading
  • [1]
    马念杰,张文龙,李军,等.冲击地压机理要素分析与评价[J].矿业科学学报,2021,6(6):651-658.

    MA Nianjie,ZHANG Wenlong,LI Jun,et al.Analysis and evaluation of essential factors for rock burst mechanism[J].Journal of Mining Science and Technology,2021,6(6):651-658.
    [2]
    宫凤强,潘俊锋,江权.岩爆和冲击地压的差异解析及深部工程地质灾害关键机理问题[J].工程地质学报,2021,29(4):933-961.

    GONG Fengqiang,PAN Junfeng,JIANG Quan.The difference analysis of rock burst and coal burst and key mechanisms of deep engineering geological hazards[J].Jouranl of Engineering Geology,2021,29(4):933-961.
    [3]
    解嘉豪.缓倾斜煤层工作面临空侧巷道围岩动静载特征及冲击规律[D].徐州:中国矿业大学,2018.

    XIE Jiahao.Static and dynamic load characteristics and rockburst rules of working face gob side roadway in gently inclined coal seam[D].Xuzhou:China University of Mining and Technology,2018.
    [4]
    吴拥政,付玉凯,何杰,等.深部冲击地压巷道“卸压-支护-防护”协同防控原理与技术[J].煤炭学报,2021,46(1):132-144.

    WU Yongzheng,FU Yukai,HE Jie,et al.Principle and technology of "pressure relief-support-protection" collaborative prevention and control in deep rock burst roadway[J].Journal of China Coal Society,2021,46(1):132-144.
    [5]
    齐庆新,赵善坤,李海涛,等.我国煤矿冲击地压防治的几个关键问题[J].煤矿安全,2020,51(10):135-143.

    QI Qingxin,ZHAO Shankun,LI Haitao,et al.Several key problems of coal bump prevention and control in China's coal mines[J].Safety in Coal Mines,2020,51(10):135-143.
    [6]
    张建民,李全生,张勇,等.煤炭深部开采界定及采动响应分析[J].煤炭学报,2019,44(5):1314-1325.

    ZHANG Jianmin,LI Quansheng,ZHANG Yong,et al.Definition of deep coal mining and response analysis[J].Journal of China Coal Society,2019,44(5):1314-1325.
    [7]
    齐庆新,李一哲,赵善坤,等.我国煤矿冲击地压发展70年:理论与技术体系的建立与思考[J].煤炭科学技术,2019,47(9):1-40.

    QI Qingxin,LI Yizhe,ZHAO Shankun,et al.Seventy years development of coal mine rockburst in China:establishment and consideration of theory and technology system[J].Coal Science and Technology,2019,47(9):1-40.
    [8]
    王博,姜福兴,朱斯陶,等.陕蒙接壤深部矿区区段煤柱诱冲机理及其防治[J].采矿与安全工程学报,2020,37(3):505-513.

    WANG Bo,JIANG Fuxing,ZHU Sitao,et al.Mechanism and prevention of rock burst induced by segment pillars in the deep mining areas of Shaanxi-Inner Mongolia adjacent regions[J].Journal of Mining & Safety Engineering,2020,37(3):505-513.
    [9]
    朱斯陶,王博,姜福兴,等.基于冲击地压-矿震协同控制的隔离煤柱合理宽度研究[J].煤炭科学技术,2021,49(6):102-110.

    ZHU Sitao,WANG Bo,JIANG Fuxing,et al.Study on reasonable width of isolated coal pillar based on rock burst-mine earthquake coordinated control[J].Coal Science and Technology,2021,49(6):102-110.
    [10]
    韩刚,窦林名,张寅,等.沿空巷道动力显现影响机制与防治技术研究[J].采矿与安全工程学报,2021,38(4):730-738.

    HAN Gang,DOU Linming,ZHANG Yin,et al.Influence mechanism and prevention technology of dynamic manifestation of roadway along goaf[J].Journal of Mining & Safety Engineering,2021,38(4):730-738.
    [11]
    赵毅鑫,周金龙,刘文岗.新街矿区深部开采邻空巷道受载特征及冲击失稳规律分析[J].煤炭学报,2020,45(5):1595-1606.

    ZHAO Yixin,ZHOU Jinlong,LIU Wengang.Characteristics of ground pressure and mechanism of coal burst in the gob side roadway at Xinjie deep mining area[J].Journal of China Coal Society,2020,45(5):1595-1606.
    [12]
    DOU Linming,HE Xueqiu,SHI Haoyu,et al.Spatial structure evolution of overlying strata and inducing mechanism of rockburst in coal mine[J].Transactions of Nonferrous Metals Society of China,2014,24(4):1255-1261.
    [13]
    姜福兴,刘懿,杨伟利,等.郓城煤矿冲击地压与载荷三带关系研究[J].采矿与安全工程学报,2017,34(3):405-410. JIANG Fuxing,LIU Yi,YANG Weili.Relationship between rock burst and the three zone structure loading model in Yuncheng Coal Mine[J].Journal of Mining & Safety Engineering,2017,34(3):405-406.
    [14]
    YADAV A,BEHERA B,SAHOO S,et al.Numerical analysis of the gob stress distribution using a modified elastic model as the gob constitutive model[J].Journal of the Institution of Engineers:Series D,2020(4):1-13.
    [15]
    POTVIN Y,WESSELOO J.Towards an understanding of dynamic demand on ground support[J].Journal of the Southern African Institute of Mining and Metallurgy,2013,113(12):913-922.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (104) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return