Volume 49 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
LEI Zhipeng, JIANG Wanting, MEN Rujia, et al. Research progress on insulation aging mechanism and condition evaluation technology of mining EPDM high-voltage cables[J]. Journal of Mine Automation,2023,49(9):167-177.  doi: 10.13272/j.issn.1671-251x.18150
Citation: LEI Zhipeng, JIANG Wanting, MEN Rujia, et al. Research progress on insulation aging mechanism and condition evaluation technology of mining EPDM high-voltage cables[J]. Journal of Mine Automation,2023,49(9):167-177.  doi: 10.13272/j.issn.1671-251x.18150

Research progress on insulation aging mechanism and condition evaluation technology of mining EPDM high-voltage cables

doi: 10.13272/j.issn.1671-251x.18150
  • Received Date: 2023-08-30
  • Rev Recd Date: 2023-09-24
  • Available Online: 2023-09-28
  • Insulation is considered the weakest link in electrical equipment. The combined effects of special working conditions in coal mines and aging factors such as electrical, thermal, and mechanical stresses make it difficult to determine the aging mechanism and evaluate the condition of EPDM insulation for high-voltage cables used in mines. This paper introduces the basic performance and aging factor types of EPDM insulation for high-voltage mobile flexible cables used in coal mines. Based on the physical, chemical, mechanical, and electrical properties of EPDM under the influence of multiple aging factors, the aging mechanism of EPDM is proposed. This paper summarizes the basic principles and existing problems of online monitoring methods for insulation resistance, partial discharge, dielectric loss factor, and temperature of mining high-voltage cables. The paper summarizes the current research status of insulation status evaluation methods for mining high-voltage cables. The paper introduces the evaluation methods for insulation status of multi parameter based on improved radar map and single parameter based on dielectric loss mining high-voltage cables. To cope with the development of coal mine intelligence, on the one hand, it is suggested to do research on intelligent perception and control of mining electrical equipment to compensate for the lack of state perception and state evaluation feature quantities. On the other hand, it is necessary to study lightweight models or algorithms to reduce the computational complexity, parameter quantity, and analysis time of intelligent terminals near devices. It improves the feasibility of state evaluation technology, and lays the foundation for achieving intelligent analysis and decision-making.

     

  • loading
  • [1]
    雷清泉. 谈谈对绝缘电介质的模糊认识——从事此领域五十年后的体会与深度迷茫[J]. 青岛科技大学学报(自然科学版),2016,37(1):1-4.

    LEI Qingquan. Understanding of insualted dielectrics:experience and confusion after being engaged in dieletric research for fifty years[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition),2016,37(1):1-4.
    [2]
    CAI Li,LIN Jingdong,LIAO Xiaoyong. Residual life prediction of marine EPR cable under discontinuous operation[J]. IET Generation,Transmission & Distribution,2020,14(25):6306-6311.
    [3]
    顾永辉. 煤矿电工手册 电工基础与电机电器(上) [M]. 3版. 北京:煤炭工业出版社,2015.

    GU Yonghui. Coal mine electrical manual electrical basics and electrical appliances[M]. 3rd ed. Beijing:Coal Industry Press,2015.
    [4]
    杜协和,陈求索,王健,等. 10 kV防爆电机定子绕组匝间绝缘结构研究[J]. 绝缘材料,2020,53(10):51-54.

    DU Xiehe,CHEN Qiusuo,WANG Jian,et al. Study on interturn insulation structure of stator winding for 10 kV explosion-proof motor[J]. Insulating Materials,2020,53(10):51-54.
    [5]
    温敏敏,田慕琴,宋渊,等. 干式变压器用Nomex绝缘纸老化规律及其可靠性分析[J]. 高电压技术,2014,40(11):3430-3437.

    WEN Minmin,TIAN Muqin,SONG Yuan,et al. Aging law and reliability analysis of Nomex paper used for dry-type transformer insulation[J]. High Voltage Engineering,2014,40(11):3430-3437.
    [6]
    雷志鹏. 乙丙橡胶绝缘介电性能及其气隙和沿面放电机理的研究[D]. 太原:太原理工大学,2015.

    LEI Zhipeng. Dielectric properties of EPR and partial discharge mechanism occurring in cavities and along surface of EPR[D]. Taiyuan:Taiyuan University of Technology,2015.
    [7]
    赵泉林,李晓刚,高瑾. 三元乙丙橡胶的人工气候老化[J]. 北京科技大学学报,2008,30(12):1422-1427.

    ZHAO Quanlin,LI Xiaogang,GAO Jin. Artificial weathering of ethylene-propylene-diene monomer (EPDM) rubber[J]. Journal of University of Science and Technology Beijing,2008,30(12):1422-1427.
    [8]
    ZHOU Lijun,LIU Cong,QUAN Shengwei,et al. Experimental study on ageing characteristics of electric locomotive ethylene propylene rubber cable under mechanical-thermal combined action[J]. High Voltage,2022,7(4):792-801. doi: 10.1049/hve2.12202
    [9]
    李志辉. 三元乙丙橡胶老化研究[D]. 厦门:厦门大学,2018.

    LI Zhihui. Study on the aging of ethylene-propylene-diene monomer[D]. Xiamen:Xiamen University,2018.
    [10]
    MEN Rujia,LEI Zhipeng,SONG Jiancheng,et al. Effect of thermal ageing on space charge in ethylene propylene rubber at DC voltage[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2019,26(3):792-800. doi: 10.1109/TDEI.2018.007752
    [11]
    李蔚,何庆辉,门汝佳,等. 电缆绝缘用三元乙丙橡胶在拉伸状态下的介电频谱分析[J]. 绝缘材料,2023,56(7):40-45.

    LI Wei,HE Qinghui,MEN Rujia,et al. Dielectric spectrum analysis of ethylene propylene diene monomer for cable insulation under tensile stress[J]. Insulating Materials,2023,56(7):40-45.
    [12]
    何庆辉,李蔚,门汝佳,等. 拉伸比对乙丙橡胶极化−去极化电流和陷阱分布的影响[J]. 绝缘材料,2023,56(6):28-33.

    HE Qinghui,LI Wei,MEN Rujia,et al. Influence of tensile ratio on PDC and trap distribution of EPDM[J]. Insulating Materials,2023,56(6):28-33.
    [13]
    金智新,闫志蕊,王宏伟,等. 新一代信息技术赋能煤矿装备数智化转型升级[J]. 工矿自动化,2023,49(6):19-31.

    JIN Zhixin,YAN Zhirui,WANG Hongwei,et al. The new generation of information technology empowers the digital and intelligent transformation and upgrading of coal mining equipment[J]. Journal of Mine Automation,2023,49(6):19-31.
    [14]
    王国法,杜毅博,陈晓晶,等. 从煤矿机械化到自动化和智能化的发展与创新实践——纪念《工矿自动化》创刊50周年[J]. 工矿自动化,2023,49(6):1-18.

    WANG Guofa,DU Yibo,CHEN Xiaojing,et al. Development and innovative practice from coal mine mechanization to automation and intelligence:Commemorating the 50th anniversary of the founding of Journal of Mine Automation[J]. Journal of Mine Automation,2023,49(6):1-18.
    [15]
    王福忠,董鹏飞,董秋生,等. 煤矿6 kV动力电缆绝缘在线监测系统研究[J]. 电子测量与仪器学报,2015,29(9):1398-1405.

    WANG Fuzhong,DONG Pengfei,DONG Qiusheng,et al. Research on online monitoring system of coal mine 6 kV power cable insulation[J]. Journal of Electronic Measurement and Instrumentation,2015,29(9):1398-1405.
    [16]
    娄建华,李盼,王洁,等. 用于煤矿电缆绝缘参数在线测量的附加低频信号源设计[J]. 工矿自动化,2012,38(10):51-54.

    LOU Jianhua,LI Pan,WANG Jie,et al. Design of additional low-frequency signal source for online measurement ofinsulation parameters of coal mine cable[J]. Industry and Mine Automation,2012,38(10):51-54.
    [17]
    孙晓斐,宋建成,雷志鹏,等. 基于电桥法的煤矿高压电缆绝缘电阻在线监测[J]. 煤矿安全,2014,45(2):82-85.

    SUN Xiaofei,SONG Jiancheng,LEI Zhipeng,et al. Insulation resistance on-line detection of coal mine high voltage cable based on DC bridge method[J]. Safety in Coal Mines,2014,45(2):82-85.
    [18]
    王文,乔记平,吝伶艳,等. 泄漏电流测量用高精度电磁式微电流传感器的研制[J]. 仪表技术与传感器,2016(12):13-16,56.

    WANG Wen,QIAO Jiping,LIN Lingyan,et al. High precision electromagnetic micro current sensor used to measure leakage current[J]. Instrument Technique and Sensor,2016(12):13-16,56.
    [19]
    雷志鹏,宋建成,孙晓斐,等. 矿用高压电缆局部放电测量传感器的研究及应用[J]. 煤炭学报,2013,38(12):2265-2271.

    LEI Zhipeng,SONG Jiancheng,SUN Xiaofei,et al. Research and application of high-frequency current transformers for partial discharge measurement of mining cables[J]. Journal of China Coal Society,2013,38(12):2265-2271.
    [20]
    雷志鹏,李蔚,何庆辉,等. 基于介电响应法的矿用电缆绝缘性能评估方法研究[J]. 工矿自动化,2023,49(1):46-55.

    LEI Zhipeng,LI Wei,HE Qinghui,et al. Study on evaluation method of insulation performance of mine cable based on dielectric response method[J]. Journal of Mine Automation,2023,49(1):46-55.
    [21]
    丁伟民,许春雨,宋建成. 一种矿用高压电缆介质损耗在线检测系统的设计[J]. 工矿自动化,2010,36(7):9-12.

    DING Weimin,XU Chunyu,SONG Jiancheng. Design of an on-line detecting system for dielectric loss of mine-used high-voltage cable[J]. Industry and Mine Automation,2010,36(7):9-12.
    [22]
    齐建伟,宋建成. 矿井高压电缆接头温度在线监测系统的研究[J]. 工矿自动化,2009,35(12):32-34.

    QI Jianwei,SONG Jiancheng. Research of on-line monitoring system for temperature of high-voltage cable joint of mine[J]. Industry and Mine Automation,2009,35(12):32-34.
    [23]
    滑增涛. 矿井关键负荷供电电缆温度场分析与安全状态监测预警系统研制[D]. 青岛:青岛科技大学,2022.

    HUA Zengtao. Analysis of temperature field of power supply cables for key loads in mines and development of monitoring and early warning system for safety status[D]. Qingdao:Qingdao University of Science and Technology,2022.
    [24]
    李蓉,周凯,饶显杰,等. 基于输入阻抗谱的电缆故障类型识别及定位[J]. 高电压技术,2021,47(9):3236-3245.

    LI Rong,ZHOU Kai,RAO Xianjie,et al. Identification and location of cable faults based on input impedance spectrum[J]. High Voltage Engineering,2021,47(9):3236-3245.
    [25]
    单秉亮,李舒宁,程俊华,等. XLPE配电电缆热老化段和集中性缺陷的辨识与定位[J]. 中国电机工程学报,2021,41(23):8231-8241.

    SHAN Bingliang,LI Shuning,CHENG Junhua,et al. Distinguishing and locating thermal aging segments and concentration defects in XLPE distribution cables[J]. Proceedings of the CSEE,2021,41(23):8231-8241.
    [26]
    饶显杰,徐忠林,龙林,等. 基于频域反射法的电缆缺陷时域诊断特征波形[J]. 电网技术,2023,47(8):3483-3493.

    RAO Xianjie,XU Zhonglin,LONG Lin,et al. Cable defect time domain diagnostic characteristic waveform based on frequency domain reflection[J]. Power System Technology,2023,47(8):3483-3493.
    [27]
    朱昊哲. 基于局部放电的矿用高压电缆绝缘在线监测系统研究[D]. 焦作:河南理工大学,2020.

    ZHU Haozhe. An online insulation monitoring system based on partial discharge for mine high voltage cable[D]. Jiaozuo:Henan Polytechnic University,2020.
    [28]
    李峰. 基于卷积神经网络的矿用电缆局部放电模式识别[D]. 西安:西安科技大学,2020.

    LI Feng. Partial discharge pattern recognition of mining cable based on convolutional neural network[D]. Xi'an:Xi'an University of Science and Technology,2020.
    [29]
    郭秀才,刘冰冰,王力立. 基于小波包和CS−BP神经网络的矿用电力电缆故障诊断[J]. 计算机应用与软件,2021,38(9):105-110.

    GUO Xiucai,LIU Bingbing,WANG Lili. Fault diagnosis of mining power cable based on wavelet packet and CS-BP neural network[J]. Computer Applications and Software,2021,38(9):105-110.
    [30]
    崔晓慧. 基于分形特征和统计特征的矿用高压电缆人工缺陷局部放电模式识别方法的研究[D]. 太原:太原理工大学,2014.

    CUI Xiaohui. Pattern recognition of partial discharge based on fractal features and statistical features resgarding mine high voltage cables with artificial defects[D]. Taiyuan:Taiyuan University of Technology,2014.
    [31]
    冯晨. 基于绝缘电阻的电缆用乙丙橡胶绝缘表面电痕故障诊断方法研究[D]. 太原:太原理工大学,2016.

    FENG Chen. Study on surface electrical tracking fault diagnosis of the cable used ethylene propylene rubber based on insulation resistance[D]. Taiyuan:Taiyuan University of Technology,2016.
    [32]
    雷志鹏,宋建成,曾君湘,等. 基于稀疏分解的矿用XLPE电缆绝缘电树枝生长阶段识别方法:CN201711289843.8[P]. 2022-03-15.

    LEI Zhipeng,SONG Jiancheng,ZENG Junxiang,et al. Recognition method of electrical tree propogation stage for the insulation of mining XLPE cables based on the sparse representation theory:CN201711289843.8[P]. 2022-03-15.
    [33]
    王科,项恩新,曹伟东,等. 基于图像特征和深度森林的乙丙橡胶电缆绝缘老化状态识别[J]. 电测与仪表,2022,59(6):32-36.

    WANG Ke,XIANG Enxin,CAO Weidong,et al. Identification of aging state of EPR cable insulation based on image feature and deep forest[J]. Electrical Measurement & Instrumentation,2022,59(6):32-36.
    [34]
    李海英,李玄,宋建成. 基于雷达图法的矿用高压电缆安全预警模型[J]. 煤炭学报,2012,37(11):1941-1946.

    LI Haiying,LI Xuan,SONG Jiancheng. Early safety warning model for mining HV cable based on radar chart method[J]. Journal of China Coal Society,2012,37(11):1941-1946.
    [35]
    LIN Lingyan,LIN Chen,GENG Pulong,et al. Aging life evaluation of coal mining flexible EPR cables under multi-stresses[J]. IEEE Access,2020,8:53539-53546. doi: 10.1109/ACCESS.2020.2981359
    [36]
    门汝佳,雷志鹏,吝伶艳,等. 矿用乙丙橡胶电缆绝缘电热老化状态评估[J]. 工矿自动化,2019,45(4):67-71. doi: 10.13272/j.issn.1671-251x.2019010038

    MEN Rujia,LEl Zhipeng,LIN Lingyan,et al. Insulation state assessment of mine-used ethylene propylene rubber cable under electro-thermal aging[J]. Industry and Mine Automation,2019,45(4):67-71. doi: 10.13272/j.issn.1671-251x.2019010038
    [37]
    LEI Zhipeng,HE Qinghui,FABIANI D,et al. Dielectric loss of EPDM insulation subjected to thermal stress and pressure[J]. IEEE Access,2022,10:129139-129148. doi: 10.1109/ACCESS.2022.3228249
    [38]
    MENG Xiaokai,WANG Zhiqiang,LI Guofeng. Nondestructive condition assessment techniques for the ethylene-propylene rubber cable[J]. Research in Nondestructive Evaluation,2017,28(1):45-59. doi: 10.1080/09349847.2016.1262929
    [39]
    何庆辉. 采煤机电缆用乙丙橡胶绝缘的多应力老化机理及性能评估方法研究[D]. 太原:太原理工大学,2023.

    HE Qinghui. Research on multi-stresses aging mechanism and performance evaluation method of EPDM insulation for shearer cables[D]. Taiyuan:Taiyuan University of Technology,2023.
    [40]
    ZHOU Kai,YUAN Hao,LI Yuan,et al. Assessing aging status and type of XLPE cable insulation with a graphic approach based on PDC measurement[J]. IEEE Transactions on Power Delivery,2022,37(6):5114-5123. doi: 10.1109/TPWRD.2022.3170947
    [41]
    刘洋. 力热应力作用下采煤机拖拽电缆用乙丙橡胶绝缘性能及失效机理研究[D]. 太原:太原理工大学,2021.

    LIU Yang. Investigation on insulation performance and failure mechanism of EPR for coal cutter's cable under thermal and mechanical stresses[D]. Taiyuan:Taiyuan University of Technology,2021.
    [42]
    WANG Yanxin,YAN Jing,SUN Qifeng,et al. A mobilenets convolutional neural network for GIS partial discharge pattern recognition in the ubiquitous power Internet of things context:optimization,comparison,and application[J]. IEEE Access,2019,7:150226-150236. doi: 10.1109/ACCESS.2019.2946662
    [43]
    张翼,朱永利. 基于深度−广度联合剪枝的电力设备局部放电轻量化诊断方法[J]. 电工技术学报,2023,38(7):1935-1945,1955.

    ZHANG Yi,ZHU Yongli. A lightweight partial discharge diagnosis method of power equipment based on depth-width joint pruning[J]. Transactions of China Electrotechnical Society,2023,38(7):1935-1945,1955.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (951) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return