Volume 49 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
LIU Hai, ZHOU Tong, CHEN Cong, et al. Design of all dielectric metasurface methane sensor based on Fano resonance[J]. Journal of Mine Automation,2023,49(9):106-114.  doi: 10.13272/j.issn.1671-251x.18108
Citation: LIU Hai, ZHOU Tong, CHEN Cong, et al. Design of all dielectric metasurface methane sensor based on Fano resonance[J]. Journal of Mine Automation,2023,49(9):106-114.  doi: 10.13272/j.issn.1671-251x.18108

Design of all dielectric metasurface methane sensor based on Fano resonance

doi: 10.13272/j.issn.1671-251x.18108
  • Received Date: 2023-04-20
  • Rev Recd Date: 2023-09-12
  • Available Online: 2023-09-28
  • Compared with traditional methane sensors, metasurface methane sensors have advantages such as high sensitivity, stable performance, miniaturization, integration, and multi functional customizability. It better meets the application needs in complex environments such as coal mines. This paper proposes an all dielectric type metasurface methane sensor based on Fano resonance. The metasurface structure consists of periodic silicon nanostructures and SiO2 substrates, consisting of four square silicon ring nanostructures and a central silicon nanoblock. By changing the geometric parameters, the effect on the Fano resonance of the all dielectric metasurface structure is observed. The results show the following points. Considering the quality factor and modulation depth of the structure, the center distance of the square silicon ring should be 1000 nm, the inner edge length of the square silicon ring should be 100 nm, and the edge length of the silicon nanoblock should be 200 nm. At this time, the quality factor is 227.60, and the modulation depth is 99.98%, which is close to 100%. By coating methane gas sensing thin films within the metasurface structure to achieve sensing and detection functions, combined with the extremely narrow linewidth Fano resonance features and significant local field enhancement effect, high-precision detection of methane gas is achieved. The simulation results show that the sensitivity of the all dielectric metasurface sensor to methane volume fraction is −0.953 nm/%. The change in methane volume fraction is linearly related to the shift of the resonance peak, indicating good monitoring performance. The refractive index sensitivity of the all dielectric metasurface sensor is as high as 883.95 nm/RIU. The resonance peak offset is linearly related to the environmental refractive index increment, which can be used to detect changes in environmental refractive index.

     

  • loading
  • [1]
    UMA S,SHOBANA M K. Metal oxide semiconductor gas sensors in clinical diagnosis and environmental monitoring[J]. Sensors and Actuators A:Physical,2023,349. DOI: 10.1016/j.sna.2022.114044.
    [2]
    刘妮,舒震,隋然,等. 基于MEMS技术的甲烷催化燃烧传感器研究进展[J]. 煤炭与化工,2022,45(11):131-135,147. doi: 10.19286/j.cnki.cci.2022.11.036

    LIU Ni,SHU Zhen,SUI Ran,et al. Research progress of methane catalytic combustion sensor based on MEMS technology[J]. Coal and Chemical Industry,2022,45(11):131-135,147. doi: 10.19286/j.cnki.cci.2022.11.036
    [3]
    XU Maosen,XU Yan,TAO Jifang,et al. A design of an ultra-compact infrared gas sensor for respiratory quotient (qCO2) detection[J]. Sensors and Actuators A:Physical,2021,331. DOI: 10.1016/j.sna.2021.112953.
    [4]
    FARQUHAR A K,HENSHAW G S,WILLIAMS D E. Errors in ambient gas concentration measurement caused by acoustic response of electrochemical gas sensors[J]. Sensors and Actuators A:Physical,2023,354. DOI: 10.1016/j.sna.2023.114254.
    [5]
    李泽芳. 矿用传感器技术发展现状与展望[J]. 煤炭与化工,2021,44(8):74-76.

    LI Zefang. Status and prospect of mining sensor technology development[J]. Coal and Chemical Industry,2021,44(8):74-76.
    [6]
    HU Jie,BANDYOPADHYAY S,LIU Yuhui,et al. A review on metasurface:from principle to smart metadevices[J]. Frontiers in Physics,2020,8. DOI: 10.3389/fphy.2020.586087.
    [7]
    HILL M T. Optical waveguide switch based on a negative-index metamaterial load[J]. Optics Letters,2023,48(4):948-951. doi: 10.1364/OL.480020
    [8]
    JIANG Yannan,SUN Shuo,WANG Jiao. Single-layer near-zero refractive index metamaterial lens based on non-complete periodic arrays[J]. Optics Express,2022,30(25):44878-44885. doi: 10.1364/OE.475299
    [9]
    GARIFULLIN A I,GAINUTDINOV R KH,KHAMADEEV M A. Acceleration of chemical reactions in hybrid one-dimensional photonic crystals based on high-index metamaterials[J]. Bulletin of the Russian Academy of Sciences:Physics,2023,86(S1):66-70.
    [10]
    韩冷,谢文宣,龚安民,等. 基于超表面的卫星天线设计进展综述[J/OL]. 电讯技术:1-10[2023-04-12]. DOI: 10.20079/j.issn.1001-893x.221225002.

    HAN Leng,XIE Wenxuan,GONG Anmin,et al. Research progress of satellite antenna based on metasurface[J/OL]. Telecommunication Engineering:1-10[2023-04-12]. DOI: 10.20079/j.issn.1001-893x.221225002.
    [11]
    刘海霞,易浩,马向进,等. 基于无源可重构智能超表面的室内无线信号覆盖增强[J]. 通信学报,2022,43(12):32-44.

    LIU Haixia,YI Hao,MA Xiangjin,et al. Indoor wireless signal coverage and enhancement based on passive reconfigurable intelligent metasurface[J]. Journal on Communications,2022,43(12):32-44.
    [12]
    WANG Yuandong,WU Guozhang,WANG Yibo,et al. Single-layer metasurface:optical transparency,microwave scattering reduction and infrared emissivity decrease[J]. Optical Materials,2023,135. DOI: 10.1016/j.optmat.2022.113380.
    [13]
    CAI Haocheng,YU Xiaoxu,MAO Luhong. Theoretical study on all-dielectric elliptic cross metasurface sensor governed by bound states in the continuum[J]. Materials,2023,16(5). DOI: 10.3390/ma16052113.
    [14]
    DANILA O,GROSS B M. Towards highly efficient nitrogen dioxide gas sensors in humid and wet environments using triggerable-polymer metasurfaces[J]. Polymers,2023,15(3). DOI: 10.3390/polym15030545.
    [15]
    MIHAI L,MIHALCEA R,TOMESCU R,et al. Selective mid-IR metamaterial-based gas sensor system:proof of concept and performances tests[J]. Nanomaterials,2022,12(6). DOI: 10.3390/nano12061009.
    [16]
    KAZANSKIY N L,BUTT M A,KHONINA S N. Carbon dioxide gas sensor based on polyhexamethylene biguanide polymer deposited on silicon nano-cylinders metasurface[J]. Sensors,2021,21(2). DOI: 10.3390/s21020378.
    [17]
    FANO U. Effects of configuration interaction on intensities and phase shifts[J]. Physical Review,1961,124(6):1866-1878. doi: 10.1103/PhysRev.124.1866
    [18]
    MIROSHNICHENKO A E,FLACH S,KIVSHAR Y S. Fano resonances in nanoscale structures [J]. Reviews of Modern Physics,2010,82(3). DOI: 10.1103/RevModPhys.82.2257.
    [19]
    FEDOTOV V A,PAPASIMAKIS N,PLUM E,et al. Spectral collapse in ensembles of metamolecules[J]. Physical Review Letters,2010,104(22). DOI: 10.1103/PhysRevLett.104.223901.
    [20]
    YUAN Shuai,QIU Xingzhi,CUI Chengcong,et al. Strong photoluminescence enhancement in all-dielectric fano metasurface with high quality factor[J]. ACS Nano,2017,11(11):10704-10711. doi: 10.1021/acsnano.7b04810
    [21]
    YANG Jianchun,ZHOU Lang,CHE Xin,et al. Photonic crystal fiber methane sensor based on modal interference with an ultraviolet curable fluoro-siloxane nano-film incorporating cryptophane A[J]. Sensors and Actuators B:Chemical,2016,235:717-722. doi: 10.1016/j.snb.2016.05.125
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (932) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return