Volume 49 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
REN Wenqing. Mine UWB radio frequency front-end electromagnetic co-simulation method based on ADS and HFSS[J]. Journal of Mine Automation,2023,49(2):85-93.  doi: 10.13272/j.issn.1671-251x.18073
Citation: REN Wenqing. Mine UWB radio frequency front-end electromagnetic co-simulation method based on ADS and HFSS[J]. Journal of Mine Automation,2023,49(2):85-93.  doi: 10.13272/j.issn.1671-251x.18073

Mine UWB radio frequency front-end electromagnetic co-simulation method based on ADS and HFSS

doi: 10.13272/j.issn.1671-251x.18073
  • Received Date: 2023-01-18
  • Rev Recd Date: 2023-02-16
  • Available Online: 2023-02-27
  • The radio frequency front-end is an important part of mine ultra-wideband (UWB) positioning system. Its electromagnetic performance affects positioning precision. At present, the RF front-end design of the UWB positioning system is generally simulated by ADS or HFSS for single device or chip. With the increasing frequency band of RF front-end design, the parasitic effect caused by three-dimensional structures such as discrete components and transmission lines has more and more influence on the performance of RF front-end circuits. It is necessary to study the electromagnetic co-simulation method of the board-level RF front-end. In order to solve the above problems, a mine UWB RF front-end electromagnetic co-simulation method based on ADS and HFSS is proposed. Firstly, the passive device is modeled by HFSS software. The corresponding snp file is obtained by directly simulating with HFSS software. Secondly, ADS software is used to build the schematic diagram of active devices, connect the parameter reading control with the schematic diagram, and import the snp file into the control. Finally, the schematic diagram is simulated in ADS, and the joint operation between ADS and HFSS is realized through S parameters as the medium to realize the joint simulation of UWB RF front-end electromagnetic characteristics. ADS and HFSS are used to co-simulate the active components, passive components and the whole board-level circuit of the UWB RF front-end. The test samples are made according to the simulation principle. The experimental results show that the co-simulation results match the measured results of the samples. It can be used for the design of the UWB RF front-end and the comprehensive test of electromagnetic performance. The RF front-end designed by the electromagnetic co-simulation method is made into a PCB sample and used in a UWB positioning system to test the positioning limit distance. The test results show that the RF front-end designed by the electromagnetic co-simulation method can completely meet the performance requirements of the actual product. It can accurately predict the effect of the actual product in the design stage, improve the design efficiency and reduce the design cost.

     

  • loading
  • [1]
    孙继平. 煤矿智能化与矿用5G[J]. 工矿自动化,2020,46(8):1-7. doi: 10.13272/j.issn.1671-251x.17648

    SUN Jiping. Coal mine intelligence and mine-used 5G[J]. Industry and Mine Automation,2020,46(8):1-7. doi: 10.13272/j.issn.1671-251x.17648
    [2]
    孙继平. 煤矿智能化与矿用5G和网络硬切片技术[J]. 工矿自动化,2021,47(8):1-6. doi: 10.13272/j.issn.1671-251x.17821

    SUN Jiping. Coal mine intelligence,mine 5G and network hard slicing technology[J]. Industry and Mine Automation,2021,47(8):1-6. doi: 10.13272/j.issn.1671-251x.17821
    [3]
    孙继平,程加敏. 煤矿智能化信息综合承载网[J]. 工矿自动化,2022,48(3):1-4,90.

    SUN Jiping,CHENG Jiamin. Coal mine intelligent information comprehensive carrier network[J]. Journal of Mine Automation,2022,48(3):1-4,90.
    [4]
    孙继平,江嬴. 矿井车辆无人驾驶关键技术研究[J]. 工矿自动化,2022,48(5):1-5,31.

    SUN Jiping,JIANG Ying. Research on key technologies of mine unmanned vehicle[J]. Journal of Mine Automation,2022,48(5):1-5,31.
    [5]
    LI Menggang,ZHU Hua,YOU Shaoze,et al. UWB-based localization system aided with inertial sensor for underground coal mine applications[J]. IEEE Sensors Journal,2020,20(12):6652-6669. doi: 10.1109/JSEN.2020.2976097
    [6]
    符世琛,李一鸣,张敏骏,等. 基于UWB信号的TW−TOF测距技术在狭长巷道中的精度测试实验研究[J]. 煤炭技术,2017,36(3):246-248. doi: 10.13301/j.cnki.ct.2017.03.093

    FU Shichen,LI Yiming,ZHANG Minjun,et al. Accuracy testing experiment in narrow roadway based on TW-TOF ranging technique of UWB signals[J]. Coal Technology,2017,36(3):246-248. doi: 10.13301/j.cnki.ct.2017.03.093
    [7]
    郝维来,杨公训. 基于UWB无线通信技术在矿井中的应用研究[J]. 计算机应用研究,2008,25(2):600-602. doi: 10.3969/j.issn.1001-3695.2008.02.087

    HAO Weilai,YANG Gongxun. Application of wireless communication technology based on UWB in coal mine underground[J]. Application Research of Computers,2008,25(2):600-602. doi: 10.3969/j.issn.1001-3695.2008.02.087
    [8]
    刘清. 基于超宽带技术的采煤机定位系统设计[J]. 煤炭科学技术,2016,44(11):132-135. doi: 10.13199/j.cnki.cst.2016.11.025

    LIU Qing. Design on positioning system of shearer based on ultra wide band technology[J]. Coal Science and Technology,2016,44(11):132-135. doi: 10.13199/j.cnki.cst.2016.11.025
    [9]
    朱臣伟,刘娟,唐昊,等. 基于协同仿真技术的超宽带射频微系统热电设计[J]. 固体电子学研究与进展,2022,42(4):269-274,286.

    ZHU Chenwei,LIU Juan,TANG Hao,et al. Thermoelectric design of ultra-wideband RF microsystem based on co-simulation technology[J]. Research & Progress of SSE,2022,42(4):269-274,286.
    [10]
    王也,覃焕耀,高洪民,等. 基于ADS的2.4 GHz射频通信系统设计与仿真分析[J]. 微波学报,2020,36(增刊1):218-221.

    WANG Ye,QIN Huanyao,GAO Hongmin,et al. Design and simulation analysis of 2.4 GHz RF communication system based on ADS[J]. Journal of Microwaves,2020,36(S1):218-221.
    [11]
    王尚,马竟轩,杨东升,等. 射频器件超细引线键合射频性能仿真[J]. 焊接学报,2021,42(10):1-7,97.

    WANG Shang,MA Jingxuan,YANG Dongsheng,et al. Research on the RF performance simulation of ultra-fine wire bonding of RF devices[J]. Transactions of the China Welding Institution,2021,42(10):1-7,97.
    [12]
    南敬昌,王明寰,王宛,等. 采用阶梯形微带馈线的高隔离度超宽带MIMO天线[J]. 微波学报,2021,37(3):6-9,46. doi: 10.14183/j.cnki.1005-6122.202103002

    NAN Jingchang,WANG Minghuan,WANG Wan,et al. Design of high isolation UWB MIMO antenna employing stepped microstrip feeder[J]. Journal of Microwaves,2021,37(3):6-9,46. doi: 10.14183/j.cnki.1005-6122.202103002
    [13]
    谢红云,刘芮,陈泉秀,等. 基于双重增益控制技术的超宽带可变增益放大器的设计与实现[J]. 北京工业大学学报,2019,45(7):646-653. doi: 10.11936/bjutxb2018040012

    XIE Hongyun,LIU Rui,CHEN Quanxiu,et al. Design and implementation of an ultra-wide band variable gain amplifier based on dual gain control technology[J]. Journal of Beijing University of Technology,2019,45(7):646-653. doi: 10.11936/bjutxb2018040012
    [14]
    谢泽明,丁环环,谢启球. 基于平均相关能量增益的超宽带平面振子优化[J]. 电波科学学报,2012,27(5):1043-1048. doi: 10.13443/j.cjors.2012.05.012

    XIE Zeming,DING Huanhuan,XIE Qiqiu. Optimization design of UWB planar dipole based on mean effective correlated energy gain[J]. Chinese Journal of Radio Science,2012,27(5):1043-1048. doi: 10.13443/j.cjors.2012.05.012
    [15]
    邱浩,王曙鸿,孙凤举,等. 基于时域有限积分技术的四级串联快脉冲直线型变压器驱动源电磁特性[J]. 电工技术学报,2022,37(4):816-826.

    QIU Hao,WANG Shuhong,SUN Fengju,et al. The electromagnetic characteristics of the four-stage series-connected fast linear transformer driver based on time-domain finite integration technique[J]. Transactions of China Electrotechnical Society,2022,37(4):816-826.
    [16]
    李朝科,李志强,肖翦,等. 300 Mvar调相机端部电磁场三维有限元分析[J]. 东方电气评论,2016,30(3):19-23. doi: 10.3969/j.issn.1001-9006.2016.03.006

    LI Chaoke,LI Zhiqiang,XIAO Jian,et al. 3D finite element analysis of the electromagnetic field in end region of 300 Mvar phasing generator[J]. Dongfang Electric Review,2016,30(3):19-23. doi: 10.3969/j.issn.1001-9006.2016.03.006
    [17]
    王鸿鹄,周洋. 电机电磁场有限元仿真网格生成方法研究[J]. 电机与控制应用,2021,48(11):33-38. doi: 10.12177/emca.2021.101

    WANG Honghu,ZHOU Yang. Research on mesh generation method of finite element simulation of motor electromagnetic field[J]. Electric Machines & Control Application,2021,48(11):33-38. doi: 10.12177/emca.2021.101
    [18]
    李世界,张兰,杨公宇,等. 基于ADS的高频雷达接收机仿真实验设计[J]. 实验室研究与探索,2018,37(12):133-136. doi: 10.3969/j.issn.1006-7167.2018.12.031

    LI Shijie,ZHANG Lan,YANG Gongyu,et al. Design of the simulation experiment for high frequency radar receiver based on ADS[J]. Research and Exploration in Laboratory,2018,37(12):133-136. doi: 10.3969/j.issn.1006-7167.2018.12.031
    [19]
    黎鹏,曾源坤,周忠超,等. 基于ADS的射频通信系统设计与分析[J]. 实验科学与技术,2019,17(2):27-31. doi: 10.3969/j.issn.1672-4550.2019.02.007

    LI Peng,ZENG Yuankun,ZHOU Zhongchao,et al. Design and analysis of RF communication system based on ADS software[J]. Experiment Science and Technology,2019,17(2):27-31. doi: 10.3969/j.issn.1672-4550.2019.02.007
    [20]
    孙成芹,胡永建,李显义,等. 基于HFSS仿真的感应耦合传输装置设计[J]. 电子测量技术,2021,44(2):32-35. doi: 10.19651/j.cnki.emt.2005225

    SUN Chengqin,HU Yongjian,LI Xianyi,et al. Design of inductive coupling transmission device based on HFSS simulation[J]. Electronic Measurement Technology,2021,44(2):32-35. doi: 10.19651/j.cnki.emt.2005225
    [21]
    章露. 基于HFSS的X波段T/R组件仿真设计研究[J]. 航空维修与工程,2022(10):70-73. doi: 10.3969/j.issn.1672-0989.2022.10.021

    ZHANG Lu. Research on simulation design of X-band T/R module based on HFSS[J]. Aviation Maintenance & Engineering,2022(10):70-73. doi: 10.3969/j.issn.1672-0989.2022.10.021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)

    Article Metrics

    Article views (212) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return