Volume 49 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
WANG Yue, SHI Han, RONG Xiang, et al. Analysis of heat dissipation performance of mine inverter based on the integrated model[J]. Journal of Mine Automation,2023,49(2):115-124.  doi: 10.13272/j.issn.1671-251x.18017
Citation: WANG Yue, SHI Han, RONG Xiang, et al. Analysis of heat dissipation performance of mine inverter based on the integrated model[J]. Journal of Mine Automation,2023,49(2):115-124.  doi: 10.13272/j.issn.1671-251x.18017

Analysis of heat dissipation performance of mine inverter based on the integrated model

doi: 10.13272/j.issn.1671-251x.18017
  • Received Date: 2022-08-22
  • Rev Recd Date: 2023-01-12
  • Available Online: 2023-02-27
  • The space of the mine inverter is closed. The internal power device itself will produce a lot of heat in the operation process, which is easy to produce thermal degradation and thermal failure. In the existing research, a certain power device or a radiator of the mine inverter is analyzed independently. The heat exchange effect among the power device or the radiator is not considered. The combination with the running state of the mine inverter is not close enough. Therefore, the deviation between the heat generation and heat transfer processes and the actual situation is large. This reduces the accuracy and comprehensiveness of the heat dissipation performance analysis. In order to the above problems, taking the 630 kW/1 140 V four-quadrant mine inverter as the research object, the heat dissipation performance of the mine inverter is analyzed based on integrated model . A topological model of the main circuit of the mine inverter considering equivalent resistance is established. The electrical characteristics of the bus bar and the cable, the charge/discharge resistance, the absorption resistance, the IGBT module and the output reactor are analyzed, and the power loss is calculated. The cooling system of the inverter is optimized by forced water cooling + air cooling + natural cooling. The IGBT module and the absorption resistor are arranged on the substrate of the water-cooling radiator. The fan is configured to accelerate the heat exchange efficiency of the output reactor, and other power devices dissipate heat naturally. Based on the integrated model, the temperature field characteristics and heat transfer characteristics of the mine inverter are numerically simulated and analyzed. The correctness of the temperature field simulation based on the integrated model and the effectiveness of the heat dissipation design are verified by building the loading test platform of mineing inverter . The results show the following points. ① Under the heat transfer of conduction, convection and radiation of the internal power devices, the temperature of the flameproof enclosure is higher than the ambient temperature. The lowest temperature is 36 ℃. The temperature of the rear substrate is higher than that of the other flameproof surfaces, and the highest temperature can reach 70 ℃. The temperature of the internal components of the mine inverter is not higher than 80 ℃, which is far lower than the specified value of relevant standards. The mine inverter has good heat dissipation performance. The temperature of IGBT module is the highest, the temperature of the bus bar assembly is the second, and the temperature of the DC filter capacitor assembly is the lowest. ② The power device in the process of charging has a larger loss. But because of the short charging time, the loss will not cause severe changes in temperature. The instantaneous temperature of the power device is not more than 59 ℃. The maximum instantaneous temperature of the discharge resistance can reach 267 ℃, and the action time above 100 ℃ is 200 seconds. The high-temperature impact resistance of the trapezoidal aluminum shell resistor can meet the application scenario. It does not form a thermal stress cycle, and will not produce thermal breakdown and thermal failure. ③ The temperature of each power device tends to be stable gradually after 2-3 h. The experimental and simulation results of each calibration temperature measurement point keep good consistency in the overall trend.

     

  • loading
  • [1]
    葛世荣. 煤矿智采工作面概念及系统架构研究[J]. 工矿自动化,2020,46(4):1-9.

    GE Shirong. Research on concept and system architecture of smart mining workface in coal mine[J]. Industry and Mine Automation,2020,46(4):1-9.
    [2]
    朱永平,徐晓建. 浅谈矿用变频器发展趋势[J]. 工矿自动化,2017,43(10):18-23.

    ZHU Yongping,XU Xiaojian. Development trend of mine frequency converter[J]. Industry and Mine Automation,2017,43(10):18-23.
    [3]
    史晗,蒋德智,荣相,等. 矿用变频器LRC滤波器寄生参数影响研究[J]. 工矿自动化,2020,46(8):44-50.

    SHI Han,JIANG Dezhi,RONG Xiang,et al. Research on influence of parasitic parameters of LRC filter for mine-used inverter[J]. Industry and Mine Automation,2020,46(8):44-50.
    [4]
    杨伟林. 浅谈防爆变频器的散热设计[J]. 防爆电机,2019,54(1):36-39,42. doi: 10.3969/J.ISSN.1008-7281.2019.01.11

    YANG Weilin. Brief discussion on heat dissipation design of explosion-proof frequency inverter[J]. Explosion-Proof Electric Machine,2019,54(1):36-39,42. doi: 10.3969/J.ISSN.1008-7281.2019.01.11
    [5]
    胡锐,陈权,胡存刚,等. 基于功率器件的3L−NPC逆变器失效机理研究[J]. 电力电子技术,2021,55(2):137-140.

    HU Rui,CHEN Quan,HU Cungang,et al. Study of the failure mechanism of 3L-NPC inverter based on power devices[J]. Power Electronics,2021,55(2):137-140.
    [6]
    刘四军,韩威,张海星,等. 高压开关柜温度流体场仿真及散热优化研究[J]. 高压电器,2020,56(10):63-69.

    LIU Sijun,HAN Wei,ZHANG Haixing,et al. Research on temperature fluid field simulation and heat dissipation optimization of high voltage switchgear[J]. High Voltage Apparatus,2020,56(10):63-69.
    [7]
    顾胜坚,尤飘飘,江友华. 非理想供电情况下的干式变压器热性能分析[J]. 变压器,2020,57(6):19-24.

    GU Shengjian,YOU Piaopiao,JIANG Youhua. Thermal performance analysis of dry-type transformer under condition of non-ideal power supply[J]. Transformer,2020,57(6):19-24.
    [8]
    李金忠,张丹丹,徐征宇,等. 有限元法分析隔声装置对特高压并联电抗器散热性能的影响[J]. 高电压技术,2017,43(3):822-827.

    LI Jinzhong,ZHANG Dandan,XU Zhengyu,et al. Heat dissipation performance of ultra-high voltage shunt reactor with sound insulation based on finite element method[J]. High Voltage Engineering,2017,43(3):822-827.
    [9]
    方杰,常桂钦,彭勇殿,等. 基于ANSYS的大功率IGBT模块传热性能分析[J]. 大功率变流技术,2012(2):16-20.

    FANG Jie,CHANG Guiqin,PENG Yongdian,et al. Thermal performance analysis of high-power IGBT module based on ANSYS[J]. High Power Converter Technology,2012(2):16-20.
    [10]
    徐鹏程,陶汉中,张红. IGBT 热管式整体翅片散热器优化分析[J]. 制冷学报,2014,35(5):101-104,109. doi: 10.3969/j.issn.0253-4339.2014.05.018

    XU Pengcheng,TAO Hanzhong,ZHANG Hong. Optimization and analysis of IGBT heat pipe heat sink with integral fin[J]. Journal of Refrigeration,2014,35(5):101-104,109. doi: 10.3969/j.issn.0253-4339.2014.05.018
    [11]
    丁杰,张平. 地铁车辆牵引逆变器热管散热器的温升试验及热仿真[J]. 中国铁道科学,2016,37(3):95-102. doi: 10.3969/j.issn.1001-4632.2016.03.014

    DING Jie,ZHANG Ping. Temperature rise test and thermal simulation of heat-pipe radiator of metro vehicel traction inverter[J]. China Railway Science,2016,37(3):95-102. doi: 10.3969/j.issn.1001-4632.2016.03.014
    [12]
    母福生,王海军,江乐新,等. 用于地铁变流器的平板微热管散热器数值模拟与实验研究[J]. 制冷学报,2019,40(5):102-108. doi: 10.3969/j.issn.0253-4339.2019.05.102

    MU Fusheng,WANG Haijun,JIANG Lexin,et al. Numerical simulation and experimental study of flat microheat pipe radiator for metro converter[J]. Journal of Refrigeration,2019,40(5):102-108. doi: 10.3969/j.issn.0253-4339.2019.05.102
    [13]
    苗盈灜. 矿用大功率隔爆变频器热设计开发[J]. 煤炭科学技术,2016,44(增刊1):102-105.

    MIAO Yingying. Thermal design and development of high power flame-proof inverter in coal mine[J]. Coal Science and Technology,2016,44(S1):102-105.
    [14]
    尹玉兴,朱兆霞. 矿用隔爆型变频器水冷散热性能研究[J]. 煤矿机械,2015,36(8):83-85. doi: 10.13436/j.mkjx.201508034

    YIN Yuxing,ZHU Zhaoxia. Research of water cooling performance of mine flameproof frequency converter[J]. Coal Mine Machinery,2015,36(8):83-85. doi: 10.13436/j.mkjx.201508034
    [15]
    王庆海. 煤矿提升机双PWM变频调速系统的研究[J]. 煤炭技术,2017,36(4):237-239.

    WANG Qinghai. Research on dual PWM frequency conversion speed regulation system for mine hoist[J]. Coal Technology,2017,36(4):237-239.
    [16]
    纽春萍,陈德桂,刘颖异,等. 交流接触器温度场仿真及影响因素的分析[J]. 电工技术学报,2007(5):71-77.

    NIU Chunping,CHEN Degui,LIU Yingyi,et al. Temperature field simulation of AC contactor and analysis of its influence factors[J]. Transactions of China Electrotechnical Society,2007(5):71-77.
    [17]
    肖继学,龚建全,董圣友,等. 电缆热路模型特征参数计算方法综述[J]. 西华大学学报(自然科学版),2015,34(5):39-42.

    XIAO Jixue,GONG Jianquan,DONG Shengyou,et al. Overview of calculation methods to characteristic parameters of the thermal circuit model for power cable[J]. Journal of Xihua University(Natural Science),2015,34(5):39-42.
    [18]
    荣相,史晗,蒋德智,等. 一种矿用变频器滤波装置[J]. 工矿自动化,2020,46(5):76-81.

    RONG Xiang,SHI Han,JIANG Dezhi,et al. A mine-used frequency converter filter device[J]. Industry and Mine Automation,2020,46(5):76-81.
    [19]
    刘鹏辉,苏梅英,李君,等. 基于高功率密度芯片应用的微流道散热研究[J]. 电力电子技术,2021,55(1):129-132. doi: 10.3969/j.issn.1000-100X.2021.01.034

    LIU Penghui,SU Meiying,LI Jun,et al. Research on microchannel heat dissipation based on high power density chip application[J]. Power Electronics,2021,55(1):129-132. doi: 10.3969/j.issn.1000-100X.2021.01.034
    [20]
    伍毅,丁杰,徐景秋,等. 基于Icepak的机车牵引变流器热设计[J]. 电力机车与城轨车辆,2020,43(2):43-47,56.

    WU Yi,DING Jie,XU Jingqiu,et al. Thermal design of locomotive traction converter based on Icepak[J]. Electric Locomotives & Mass Transit Vehicles,2020,43(2):43-47,56.
    [21]
    祝德春,王新春. 储能电池模组的风冷散热优化设计研究[J]. 电源技术,2022,46(5):523-527.

    ZHU Dechun,WANG Xinchun. Research on optimal design of air cooling and heat dissipation of energy storage battery module[J]. Chinese Journal of Power Sources,2022,46(5):523-527.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(22)

    Article Metrics

    Article views (146) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return