Volume 48 Issue 9
Sep.  2022
Turn off MathJax
Article Contents
HU Yanjun, ZHAO Yingzhu, YANG Yixue, et al. Development of integrated localization and wireless communication and its application in the underground coal mine[J]. Journal of Mine Automation,2022,48(9):123-133.  doi: 10.13272/j.issn.1671-251x.17945
Citation: HU Yanjun, ZHAO Yingzhu, YANG Yixue, et al. Development of integrated localization and wireless communication and its application in the underground coal mine[J]. Journal of Mine Automation,2022,48(9):123-133.  doi: 10.13272/j.issn.1671-251x.17945

Development of integrated localization and wireless communication and its application in the underground coal mine

doi: 10.13272/j.issn.1671-251x.17945
  • Received Date: 2022-05-10
  • Rev Recd Date: 2022-09-04
  • Available Online: 2022-09-22
  • Integrated localization and wireless communication(ILWC) is a new information technology based on hardware resources and software information sharing to realize the coordination of location and communication functions. This paper briefly introduces the research progress of wireless communication technology and localization technology, and reveals that ILWC technology is the inevitable result of the bearer services expansion of wireless communication system. This study summarizes the definition and connotation of ILWC technology in different research. The core idea of ILWC is defined as "hardware integration and software sharing". The research progress of ILWC technology is summarized according to the two stages of equipment reuse and deep fusion. Combined with the particularity of the scene of the coal mine, the concept of ILWC in the coal mine is put forward. Based on the sharing of time, space, spectrum, computing and other resources, the technology is the fusion technology of communication function and localization function with an automatic scene perception and dynamic and adaptive resource allocation mechanism. The adaptability of underground ILWC in roadway, central substation, underground parking lot, coal working face and other scenes is discussed. It is pointed out that the challenges faced by underground ILWC are the complexity of underground wireless channel, unbalanced deployment of base stations and precise recognition of complex underground scene.

     

  • loading
  • [1]
    谢和平,吴立新,郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报,2019,44(7):1949-1960.

    XIE Heping,WU Lixin,ZHENG Dezhi. Prediction on the energy consumption and coal demand of China in 2025[J]. Journal of China Coal Society,2019,44(7):1949-1960.
    [2]
    刘峰,郭林峰,赵路正. 双碳背景下煤炭安全区间与绿色低碳技术路径[J]. 煤炭学报,2022,47(1):1-15. doi: 10.13225/j.cnki.jccs.yg22.0016

    LIU Feng,GUO Linfeng,ZHAO Luzheng. Research on coal safety range and green low-carbon technology path under the dual-carbon background[J]. Journal of China Coal Society,2022,47(1):1-15. doi: 10.13225/j.cnki.jccs.yg22.0016
    [3]
    康瑛石,吴吉义,王海宁. 基于云计算的一体化煤矿安全监管信息系统[J]. 煤炭学报,2011,36(5):873-877.

    KANG Yingshi,WU Jiyi,WANG Haining. Overall coalmine safety monitoring and management system based on cloud computing[J]. Journal of China Coal Society,2011,36(5):873-877.
    [4]
    国家矿山安全监察局. 国家矿山安全监察局综合司关于加强煤矿井下人员位置监测管理工作的通知[EB/OL]. [2022-04-20]. https://www.chinamine-safety.gov.cn/zfxxgk/fdzdgknr/tzgg/202110/t20211028_401001.shtml.

    National Mine Safety Administration. Comprehensive Department of National Mine Safety Administration: notice of strengthening personnel location monitoring management of coal mine underground[EB/OL]. [2022-04-20]. https://www.chinamine-safety.gov.cn/zfxxgk/fdzdgknr/tzgg/202110/t20211028_401001.shtml.
    [5]
    山东煤矿安全监察局, 山东省能源局. 关于开展煤矿智能化和人员精确定位系统建设重点督查的通知[EB/OL]. [2022-04-20]. http://finance.sina.com.cn/money/future/indu/2020-04-15/doc-iirczymi6412571.shtml.

    Shandong Bureau of the National Mine Safety Administration, Energy Administration of Shandong Province. Notice of developing extensive supervision of coal mine intelligence and precision personnel location system construction[EB/OL]. [2022-04-20]. http://finance.sina.com.cn/money/future/indu/2020-04-15/doc-iirczymi6412571.shtml.
    [6]
    中国煤炭工业协会. 中国煤炭工业协会关于落实能源领域5G应用实施方案的通知[EB/OL]. [2022-04-21]. https://coal.in-en.com/html/coal-2602525.shtml.

    China National Coal Association. China National Coal Association: notice of executing 5G application scheme for energy field[EB/OL]. [2022-04-21]. https://coal.in-en.com/html/coal-2602525.shtml.
    [7]
    RUI L,ELLIPTIC K C. Localization:performance study and optimum receiver placement[J]. IEEE Transactions on Signal Processing,2014,62(18):4673-4688. doi: 10.1109/TSP.2014.2338835
    [8]
    FOY W H. Position-location solutions by taylor-series estimation[J]. IEEE Transactions on Aerospace Electronic Systems,2007(2):187-194.
    [9]
    TORRIERI D J. Statistical theory of passive location systems[J]. IEEE Transactions on Aerospace,1984,20(2):183-198.
    [10]
    GODRICH H,HAIMOVICH A M,BLUM R S. Target localization accuracy gain in MIMO radar-based systems[J]. IEEE Transactions on Information Theory,2010,56(6):2783-2803. doi: 10.1109/TIT.2010.2046246
    [11]
    房嘉奇,冯大政,李进. TDOA中的修正牛顿及泰勒级数方法[J]. 西安电子科技大学学报,2016,43(6):27-33.

    FANG Jiaqi,FENG Dazheng,LI Jin. Research on modified Newton and Taylor-series methods in TDOA[J]. Journal of Xidian University,2016,43(6):27-33.
    [12]
    夏斌,刘承鹏,孙文珠,等. 基于多元变量泰勒级数展开模型的定位算法[J]. 电子科技大学学报,2016,45(6):888-892. doi: 10.3969/j.issn.1001-0548.2016.06.002

    XIA Bin,LIU Chengpeng,SUN Wenzhu,et al. Localization algorithm based on multivariable Taylor series expansion model[J]. Journal of University of Electronic Science and Technology of China,2016,45(6):888-892. doi: 10.3969/j.issn.1001-0548.2016.06.002
    [13]
    张晓玲,余檑,吴喜亮,等. 快速高精度双站距离空间投影定位算法[J]. 电子与信息学报,2016,38(9):2330-2335.

    ZHANG Xiaoling,YU Lei,WU Xiliang,et al. Fast and high precision multi-target positioning via imaging strategy[J]. Journal of Electronics & Information Technology,2016,38(9):2330-2335.
    [14]
    SO H C,CHAN F K W. A generalized subspace approach for mobile positioning with time-of-arrival measurements[J]. IEEE Transactions on Signal Processing,2007,55(10):5103-5107. doi: 10.1109/TSP.2003.896092
    [15]
    ZOUBIR A,WANG Yide,CHARGE P. Efficient subspace-based estimator for localization of multiple incoherently distributed sources[J]. IEEE Transactions on Signal Processing,2008,56(2):532-542. doi: 10.1109/TSP.2007.907877
    [16]
    CHALLA R N, SHAMSUNDER S. High-order subspace-based algorithms for passive localization of near-field sources[C]. Conference on Signals, Systems and Computers, Pacific Grove, 1995: 777-781.
    [17]
    CHEUNG K W,SO H C,MA W K,et al. Least squares algorithms for time-of-arrival-based mobile location[J]. IEEE Transactions on Signal Processing,2004,52(4):1121-1130. doi: 10.1109/TSP.2004.823465
    [18]
    HUANG Yiteng,BENESTY J,ELKO G W,et al. Real-time passive source localization:a practical linear-correction least-squares approach[J]. IEEE Transactions on Speech,2001,9(8):943-956.
    [19]
    CHEUNG K W, SO H C, MA W K, et al. Received signal strength based mobile positioning via constrained weighted least squares[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, Hong Kong, 2003: V-137-V-140.
    [20]
    TONG W. A perspective of wireless innovations in the next decade[EB/OL]. [2022-04-25]. https://www.comsoc.org/ieee-globecom-2018-videos.
    [21]
    XIAO Zhiqiang,ZENG Yong. An overview on integrated localization and communication towards 6G[J]. Science China Information Sciences,2020,65(3):1-46.
    [22]
    YANG Jie,XU Jing,LI Xiao,et al. Integrated communication and localization in millimeter-wave systems[J]. Frontiers of Information Technology & Electronic Engineering,2021,22(4):457-470.
    [23]
    DE-LIMA C,BELOT D,BERKVENS R,et al. Convergent communication,sensing and localization in 6G systems:an overview of technologies,opportunities and challenges[J]. IEEE Access,2021,9:26902-26925. doi: 10.1109/ACCESS.2021.3053486
    [24]
    SCHMIDT R,SCHMIDT R O. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas,1986,34(3):276-280. doi: 10.1109/TAP.1986.1143830
    [25]
    ROY R,KAILATH T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics,Speech,and Signal Processing,1989,37(7):984-995. doi: 10.1109/29.32276
    [26]
    MEI Xiaojun,WU Huafeng,XIAN Jiangfeng. Matrix factorization-based target localization via range measurements with uncertainty in transmit power[J]. IEEE Wireless Communications Letters,2020,9(10):1611-1615. doi: 10.1109/LWC.2020.2998609
    [27]
    ZARE M,BATTULWAR R,SEAMONS J,et al. Applications of wireless indoor positioning systems and technologies in underground mining:a review[J]. Mining Metallurgy Exploration,2021,38(6):2307-2322. doi: 10.1007/s42461-021-00476-x
    [28]
    SOLTANAGHAEI E, KALYANARAMAN A, WHITEHOUSE K. Multipath triangulation: decimeter-level WiFi localization and orientation with a single unaided receiver[C]. The 16th Annual International Conference on Mobile Systems, Applications, and Services, Munich, 2018: 376-388.
    [29]
    GIULIANO R,CARDARILLI G C,CESARINI C,et al. Indoor localization system based on bluetooth low energy for museum applications[J]. Electronics,2020,9(6):1055-1075. doi: 10.3390/electronics9061055
    [30]
    HAJIAKHONDI-MEYBODI Z, SALIMIBENI M, PLATANIOTIS K N, et al. Bluetooth low energy-based angle of arrival estimation via switch antenna array for indoor localization[C]. IEEE 23rd International Conference on Information Fusion, Rustenburg, 2020: 1-6.
    [31]
    DJOSIC S,STOJANOVIC I,JOVANOVIC M,et al. Fingerprinting-assisted UWB-based localization technique for complex indoor environments[J]. Expert Systems with Applications,2021,167:114188-114202. doi: 10.1016/j.eswa.2020.114188
    [32]
    GROBWINDHAGER B, STOCKER M, RATH M, et al. SnapLoc: an ultra-fast UWB-based indoor localization system for an unlimited number of tags[C]. The 18th ACM/IEEE International Conference on Information Processing in Sensor Networks, Montreal, 2019: 61-72.
    [33]
    PÉREA-SOLANO J J,EZPELETA S,CLAVER J M. Indoor localization using time difference of arrival with UWB signals and unsynchronized devices[J]. Ad Hoc Networks,2020,99:102067-102077. doi: 10.1016/j.adhoc.2019.102067
    [34]
    XU Bin,SUN Guodong,YU Ran,et al. High-accuracy TDOA-based localization without time synchronization[J]. IEEE Transactions on Parallel Distributed Systems,2012,24(8):1567-1576.
    [35]
    HANSSENS B,PLETS D,TANGHE E,et al. An indoor variance-based localization technique utilizing the UWB estimation of geometrical propagation parameters[J]. IEEE Transactions on Antennas & Propagation,2018,66(5):2522-2533.
    [36]
    TAO Bo,WU Haibing,GONG Zeyu,et al. An RFID-based mobile robot localization method combining phase difference and readability[J]. IEEE Transactions on Automation Science,2020,18(3):1406-1416.
    [37]
    AYYALASOMAYAJULA R, VASISHT D, BHARADIA D. BLoc: CSI-based accurate localization for BLE tags[C]. The 14th International Conference on Emerging Networking Experiments and Technologies, Heraklion, 2018: 126-138.
    [38]
    THAMMAVONG L, KHONGSOMBOON K, PROMWONG S. Quantitative evaluation of Zigbee localization based on weighted centroid with quadratic means[C]. Global Wireless Summit, Chiang Rai, 2018: 323-326.
    [39]
    PUJIHARSONO H,UTAMI D,AINUL R D. Trilateration method for estimating location in RSSI-based indoor positioning system using Zigbee protocol[J]. Jurnal Infotel,2020,12(1):1-6.
    [40]
    KOKKINIS A,KANARIS L,LIOTTA A,et al. RSS indoor localization based on a single access point[J]. Sensors,2019,19(17):3711-3725. doi: 10.3390/s19173711
    [41]
    CHEN Hao,ZHANG Yifan,LI Wei,et al. ConFi:convolutional neural networks based indoor Wi-Fi localization using channel state information[J]. IEEE Access,2017,5:18066-18074. doi: 10.1109/ACCESS.2017.2749516
    [42]
    ZHANG Tieyang, ZHANG Kuiyuan, LIU Dongjing, et al. CSI-Based calibration free localization with rotating antenna for coal mine[C]. International Conference on Wireless Algorithms, Systems, and Applications, Nanjing, 2021: 263-274.
    [43]
    HEKIMIAN-WILLIAMS C, GRANT B, LIU Xiuwen, et al. Accurate localization of RFID tags using phase difference[C]. IEEE International Conference on RFID, Orlando, 2010: 89-96.
    [44]
    GJENGSET J, XIONG Jie, MCPHILLIPS G, et al. Phaser: enabling phased array signal processing on commodity Wi-Fi access points[C]. The 20th Annual International Conference on Mobile Computing and Networking, Maui, 2014: 153-164.
    [45]
    KOTARU M, JOSHI K, BHARADIA D, et al. Spotfi: decimeter level localization using wifi[C]. The ACM Conference on Special Interest Group on Data Communication, London, 2015: 269-282.
    [46]
    HSIEH C-H,CHEN J-Y,NIEN B-H. Deep learning-based indoor localization using received signal strength and channel state information[J]. IEEE Access,2019,7:33256-33267. doi: 10.1109/ACCESS.2019.2903487
    [47]
    WANG Yixin, YE Qiang, CHENG Jie, et al. RSSI-based bluetooth indoor localization[C]. The 11th International Conference on Mobile Ad-hoc and Sensor Networks, Shenzhen, 2015: 165-171.
    [48]
    AINUL R D,UTAMI D,PUJIHARSONO H. Trilateration method for estimating location in RSSI-based indoor positioning system using Zigbee protocol[J]. Jurnal Infotel,2020,12(1):1-6.
    [49]
    SHAMAEI K,KASSAS Z M. Receiver design and time of arrival estimation for opportunistic localization with 5G signals[J]. IEEE Transactions on Wireless Communications,2021,20(7):4716-4731. doi: 10.1109/TWC.2021.3061985
    [50]
    CHIRIYATH A R,PAUL B,JACYNA G M,et al. Inner bounds on performance of radar and communications co-existence[J]. IEEE Transactions on Signal Processing,2015,64(2):464-474.
    [51]
    KOBAYASHI M, HAMAD H, KRAMER G, et al. Joint state sensing and communication over memoryless multiple access channels[C]. IEEE International Symposium on Information Theory, Paris, 2019: 270-274.
    [52]
    TURLAPATY A, JIN Yuanwei. A joint design of transmit waveforms for radar and communications systems in coexistence[C]. Radar Conference, Cincinnati, 2014: 0315-0319.
    [53]
    KWON G,CONTI A,PARK H,et al. Joint communication and localization in millimeter wave networks[J]. IEEE Journal of Selected Topics in Signal Processing,2021,15(6):1439-1454. doi: 10.1109/JSTSP.2021.3113115
    [54]
    ZHOU Yifan,ZHOU Huilin,ZHOU Fuhui,et al. Resource allocation for a wireless powered integrated radar and communication system[J]. IEEE Wireless Communications Letters,2019,8(1):253-256. doi: 10.1109/LWC.2018.2868819
    [55]
    ZHANG J A, CANTONI A, HUANG Xiaojing, et al. Framework for an innovative perceptive mobile network using joint communication and sensing[C]. IEEE 85th Vehicular Technology Conference, Sydney, 2017: 1-5.
    [56]
    RAHMAN M L,ZHANG J A,HUANG Xiaojing,et al. Framework for a perceptive mobile network using joint communication and radar sensing[J]. IEEE Transactions on Aerospace,2019,56(3):1926-1941.
    [57]
    STURM C,WIESBECK W. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing[J]. Proceedings of the IEEE,2011,99(7):1236-1259. doi: 10.1109/JPROC.2011.2131110
    [58]
    ZHANG J A,HUANG Xiaojing,GUO Yingjie,et al. Multibeam for joint communication and sensing using steerable analog antenna arrays[J]. IEEE Transactions on Vehicular Technology,2018,68(1):671-685.
    [59]
    LIU Fan, MASOUROS C. Hybrid beamforming with sub-arrayed MIMO radar: enabling joint sensing and communication at mmwave band[C]. IEEE International Conference on Acoustics, Brighton, 2018: 7770-7774.
    [60]
    DRAWIL N M,BASIR O. Intervehicle-communication-assisted localization[J]. IEEE Transactions on Intelligent Transportation Systems,2010,11(3):678-691. doi: 10.1109/TITS.2010.2048562
    [61]
    DAMMANN A, AGAPIOU G, BASTOS J, et al. WHERE2 location aided communications[C]. The 19th European Wireless Conference, Guildford, 2013: 1-8.
    [62]
    CELEBI H,ARSLAN H. Utilization of location information in cognitive wireless networks[J]. IEEE Wireless Communications Letters,2007,14(4):6-13. doi: 10.1109/MWC.2007.4300977
    [63]
    SLOCK D. Location aided wireless communications[C]. The 5th International Symposium on Communications, Control and Signal Processing, Rome, 2012: 1-6.
    [64]
    HE Jiguang,WYMEERSCH H,JUNTTI M. Leveraging location information for RIS-aided mmwave MIMO communications[J]. IEEE Wireless Communications Letters,2021,10(7):1380-1384. doi: 10.1109/LWC.2021.3067474
    [65]
    Federal Communications Commission. Revision of part 15 of the commission's rules regarding ultra-wideband transmission system[S].
    [66]
    ECC Decision. The harmonised conditions for devices using ultra-wideband(UWB) technology in bands below 10.6 GHz[EB/OL]. [2022-04-25]. https://www.docin.com/p-468228964.html.
    [67]
    ZWIRELLO L,SCHIPPER T,HARTER M,et al. UWB localization system for indoor applications:concept,realization and analysis[J]. Journal of Electrical and Computer Engineering,2012,2012(4):1-11.
    [68]
    吴启晖,赵春明,高瞻. 码片均衡多径干扰抵消联合接收机[J]. 东南大学学报(自然科学版),2004,34(5):565-569.

    WU Qihui,ZHAO Chunming,GAO Zhan. Combined chip equalization multi-path interference cancellation receiver[J]. Journal of Southeast University(Natural Science Edition),2004,34(5):565-569.
    [69]
    陈育斌,李建东. 多径衰落信道中M进制直接序列扩频系统RAKE接收机性能分析[J]. 电子学报,1999,27(增刊1):72-75,60.

    CHEN Yubin,LI Jiandong. Performance of M-ary direct-sequence spread spectrum RAKE receiver in multipath fading channel[J]. ACTA Electronica Sinica,1999,27(S1):72-75,60.
    [70]
    WEI Yulin, CHOUDHURY R R. Angle-of-arrival(AOA) factorization in multipath channels[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, 2021: 7878-7882.
    [71]
    SEN S, LEE J, KIM K-H, et al. Avoiding multipath to revive inbuilding WiFi localization[C]. The 11th Annual International Conference on Mobile Systems, Applications, and Services, Taipei , 2013: 249-262.
    [72]
    WIELANDT S,STRYCKER L D. Indoor multipath assisted angle of arrival localization[J]. Sensors,2017,17(11):2522. doi: 10.3390/s17112522
    [73]
    WANG Yunlong,WU Ying,SHEN Yuan. Joint spatiotemporal multipath mitigation in large-scale array localization[J]. IEEE Transactions on Signal Processing,2018,67(3):783-797.
    [74]
    OJALA T,PIETIKAINEN M,MAENPAA T,et al. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis,2002,24(7):971-987. doi: 10.1109/TPAMI.2002.1017623
    [75]
    VAILAYA A, FIGUEIREDO M, JAIN A, et al. Content-based hierarchical classification of vacation images[C]. IEEE International Conference on Multimedia Computing and Systems, Florence, 1999: 518-523.
    [76]
    LIPSON P, GRIMSON E, SINHA P. Configuration based scene classification and image indexing[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1997: 1007-1013.
    [77]
    SMITH J R,LI C S. Image classification and querying using composite region templates[J]. Computer Vision,1999,75(1/2):165-174.
    [78]
    CARSON C, THOMAS M, BELONGIE S, et al. Blobworld: a system for region-based image indexing and retrieval[C]. International Conference on Advances in Visual Information Systems, Berlin, 1999: 509-517.
    [79]
    WANG J Z,LI Jia,WIEDERHOLD G,et al. SIMPLIcity:semantics-sensitive integrated matching for picture libraries[J]. IEEE Transactions on Pattern Analysis,2001,23(9):947-963. doi: 10.1109/34.955109
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (171) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return