Volume 49 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
CHEN Yongran. Research on cross interference and evaluation method of coal mine gas detection equipment[J]. Journal of Mine Automation,2023,49(2):63-69, 93.  doi: 10.13272/j.issn.1671-251x.17871
Citation: CHEN Yongran. Research on cross interference and evaluation method of coal mine gas detection equipment[J]. Journal of Mine Automation,2023,49(2):63-69, 93.  doi: 10.13272/j.issn.1671-251x.17871

Research on cross interference and evaluation method of coal mine gas detection equipment

doi: 10.13272/j.issn.1671-251x.17871
  • Received Date: 2021-12-15
  • Rev Recd Date: 2023-02-03
  • Available Online: 2023-02-27
  • At present, coal mine underground gas detection equipment often causes false alarms or fails to alarm due to cross interference. There are potential safety hazards. There is no clear evaluation method for gas cross interference in current national or industry standards. In view of the above problems, combining with the actual underground environment gas type and volume fraction threshold in coal mines, the cross interference mechanism and characteristics of gas detection equipment based on the three commonly used principles of catalytic combustion, laser and electrochemistry are researched by using a combination method of theoretical analysis and experimental verification. The cross interference tests are designed and conducted. Combining with the common methods of gas detection equipment error testing in current standards, a gas detection equipment cross interference evaluation method based on the special gas environment in coal mines is proposed. The cross interference characteristics of the gas detection equipment are evaluated using the test method. By introducing cross interference gas samples, the cross interference value of the gas detection equipment is calculated. The value is compared with the highest precision of the equipment so as to determine if the non-target gas has a cross interference impact on the gas detection equipment. The test results show that cross interference of gas detection equipment is widespread. The methane detection equipment based on the catalytic combustion principle is easy to be interfered by sulfide and hydrogen under the specific gas environment conditions in the coal mine. Therefore, methane detection equipment should be avoided to be used in the gas environment containing hydrogen sulfide or sulfur dioxide for a long time. It will avoid poisoning or inhibiting the catalyst and affecting the measurement precision. Gas detection equipment based on the laser principle for detecting methane and acetylene is generally not affected by interference from common gases in coal mines and does not require cross interference testing. However, gas detection equipment based on the laser principle for detecting ethylene is affected by interference from methane gas. If it passes the cross interference evaluation, it can be used in a methane environment. If it fails, it should be clearly stated that the product cannot be used in environments containing methane. The cross interference characteristics of gas detection equipment based on the electrochemical principle are uncertain. It is necessary to determine the cross interference gas environment that can and cannot be used after the cross interference evaluation.

     

  • loading
  • [1]
    国家安全生产监督管理总局. 煤矿安全规程(2022)[M]. 北京: 应急管理出版社, 2022.

    State Administration of Work Safety. Coal mine safety regulations(2022)[M]. Beijing: Emergency Management Press, 2022.
    [2]
    陈永冉. 《煤矿安全规程》实施情况后评估与讨论[J]. 煤炭工程,2021,53(1):19-22.

    CHEN Yongran. Post-evaluation and discussion on the implementation of Coal mine safety regulations[J]. Coal Engineering,2021,53(1):19-22.
    [3]
    陈硕鹏,陈艺童. 煤矿安全监控系统抗干扰问题[J]. 煤矿安全,2021,52(5):131-133.

    CHEN Shuopeng,CHEN Yitong. Anti-interference of coal mine safety monitoring system[J]. Safety in Coal Mines,2021,52(5):131-133.
    [4]
    苗飞飞,毛东森,郭晓明,等. 甲烷催化燃烧催化剂的研究进展[J]. 应用技术学报,2019,19(3):242-248. doi: 10.3969/j.issn.2096-3424.2019.03.006

    MIAO Feifei,MAO Dongsen,GUO Xiaoming,et al. Research advances in catalysts for methane catalytic combustion[J]. Journal of Technology,2019,19(3):242-248. doi: 10.3969/j.issn.2096-3424.2019.03.006
    [5]
    耿俊,柯权力,周文茜,等. 催化燃烧催化剂抗硫性的研究进展[J]. 燃料化学学报,2022,50(5):564-575. doi: 10.1016/S1872-5813(21)60182-2

    GENG Jun,KE Quanli,ZHOU Wenxi,et al. Research progress in the sulfur resistance of catalytic combustion catalysts[J]. Journal of Fuel Chemistry and Technology,2022,50(5):564-575. doi: 10.1016/S1872-5813(21)60182-2
    [6]
    李洋洋. 金属氧化物及负载钯基催化剂上CO催化转化的谱学研究[D]. 厦门: 厦门大学, 2019.

    LI Yangyang. Spectroscopic studies of metal oxide and supported palladium based catalysts for CO catalytic conversion[D]. Xiamen: Xiamen University, 2019.
    [7]
    宋鑫. 钯基催化剂上氢气和氧气直接合成双氧水反应机理的理论研究[D]. 秦皇岛: 燕山大学, 2020.

    SONG Xin. The theoretical study of reaction mechanism for direct synthesis of H2O2 from H2 and O2 on palladium based catalysts[D]. Qinhuangdao: Yanshan University, 2020.
    [8]
    赵成龙,黄丹飞,刘智颖,等. 开放型TDLAS−WMS技术CO2痕量气体检测[J]. 光子学报,2022,51(2):333-342.

    ZHAO Chenglong,HUANG Danfei,LIU Zhiying,et al. Measurement of trace CO2 concentration with open-path TDLAS-WMS technology[J]. Acta Photonica Sinica,2022,51(2):333-342.
    [9]
    王国水,郭奥,刘晓楠,等. TDLAS气体检测系统仿真与影响因素分析[J]. 光谱学与光谱分析,2021,41(10):3262-3268.

    WANG Guoshui,GUO Ao,LIU Xiaonan,et al. Simulation and influencing factors analysis of gas detection system based on TDLAS technology[J]. Spectroscopy and Spectral Analysis,2021,41(10):3262-3268.
    [10]
    张汉辉. 波谱学原理及应用[M]. 北京: 化学工业出版社, 2011.

    ZHANG Hanhui. Principle and application of spectroscopy[M]. Beijing: Chemical Industry Press, 2011.
    [11]
    王小松. 矿用激光甲烷传感器工作稳定性加速试验[J]. 工矿自动化,2019,45(12):45-49. doi: 10.13272/j.issn.1671-251x.2018100034

    WANG Xiaosong. Accelerated test of working stability of mine-used laser methane sensor[J]. Industry and Mine Automation,2019,45(12):45-49. doi: 10.13272/j.issn.1671-251x.2018100034
    [12]
    高彦伟,张玉钧,陈东,等. 基于可调谐半导体激光吸收光谱的氧气浓度测量研究[J]. 光学学报,2016,36(3):275-281.

    GAO Yanwei,ZHANG Yujun,CHEN Dong,et al. Measurement of oxygen concentration using tunable diode laser absorption spectroscopy[J]. Acta Optica Sinica,2016,36(3):275-281.
    [13]
    信丰鑫,郭金家,李杰,等. 可调谐半导体激光吸收光谱技术对CO2浓度的测量研究[J]. 中国海洋大学学报(自然科学版),2020,50(8):137-142.

    XIN fengxin,GUO Jinjia,LI Jie,et al. Measurement of CO2 concentration by tunable diode laser absorption spectroscopy[J]. Periodical of Ocean University of China(Natural Science Edition),2020,50(8):137-142.
    [14]
    冯仕凌. 基于新型多光程吸收池的痕量气体激光传感器的设计及应用[D].太原: 太原科技大学,2021.

    FENG Shiling. Design and application of trace gas laser-based sensor using a novel multi-pass absorption cell[D]. Taiyuan: Taiyuan University of Science and Technology, 2021.
    [15]
    孙明晨,吴小成,宫晓艳,等. 基于三维射线追踪和HITRAN数据库的透过率仿真计算[J]. 光谱学与光谱分析,2020,40(7):2092-2097.

    SUN Mingchen,WU Xiaocheng,GONG Xiaoyan,et al. Transmittance simulation calculation based on 3D ray tracing and HITRAN database[J]. Spectroscopy and Spectral Analysis,2020,40(7):2092-2097.
    [16]
    崔洪鲁,闫召爱,张炳炎,等. 基于HITRAN数据库的大气激光雷达信号仿真[J]. 空间科学学报,2020,40(6):1046-1051. doi: 10.11728/cjss2020.06.1046

    CUI Honglu,YAN Zhao'ai,ZHANG Bingyan,et al. Research on atmospheric lidar signal simulation based on HITRAN database[J]. Chinese Journal of Space Science,2020,40(6):1046-1051. doi: 10.11728/cjss2020.06.1046
    [17]
    魏玉宾. 光纤气体传感器及其在安全工程应用中的关键技术研究[D]. 济南: 山东大学, 2016.

    WEI Yubin. Research on key technologies of optical fiber gas sensor and its application in safety engineering[D]. Jinan: Shandong University, 2016.
    [18]
    海涛,杨永超,演明,等. 恒电位电解型电化学气体传感器研究[J]. 传感器与微系统,2020,39(9):63-65. doi: 10.13873/J.1000-9787(2020)09-0063-03

    HAI Tao,YANG Yongchao,YAN Ming,et al. Research of constant potential electrolysis-type electrochemical gas sensor[J]. Transducer and Microsystem Technologies,2020,39(9):63-65. doi: 10.13873/J.1000-9787(2020)09-0063-03
    [19]
    王晓波,雷远进,申梅桂,等. 电化学CO2气体传感器的制备及评价[J]. 传感技术学报,2018,31(10):1467-1471. doi: 10.3969/j.issn.1004-1699.2018.010.002

    WANG Xiaobo,LEI Yuanjin,SHEN Meigui,et al. A study on preparation and evaluation of electrochemical CO2 gas sensors[J]. Chinese Journal of Sensors and Actuators,2018,31(10):1467-1471. doi: 10.3969/j.issn.1004-1699.2018.010.002
    [20]
    王海波. 低功耗一氧化碳传感器研究进展[J]. 工矿自动化,2021,47(7):72-78. doi: 10.13272/j.issn.1671-251x.17755

    WANG Haibo. Research progress of low-power carbon monoxide sensors[J]. Industry and Mine Automation,2021,47(7):72-78. doi: 10.13272/j.issn.1671-251x.17755
    [21]
    王洋洋,秦浩,杨永超,等. 电化学多组分气体传感器设计与性能分析[J]. 传感器与微系统,2018,37(11):87-89.

    WANG Yangyang,QIN Hao,YANG Yongchao,et al. Design and performance analysis of electrochemical multi-component gas sensor[J]. Transducer and Microsystem Technologies,2018,37(11):87-89.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(8)

    Article Metrics

    Article views (124) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return