留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于三维地质建模技术的煤矿隐蔽致灾因素透明化研究

王嘉伟 王海军 吴汉宁 吴艳 韩珂 程鑫 董敏涛

王嘉伟,王海军,吴汉宁,等. 基于三维地质建模技术的煤矿隐蔽致灾因素透明化研究[J]. 工矿自动化,2024,50(3):71-81, 121.  doi: 10.13272/j.issn.1671-251x.2023110030
引用本文: 王嘉伟,王海军,吴汉宁,等. 基于三维地质建模技术的煤矿隐蔽致灾因素透明化研究[J]. 工矿自动化,2024,50(3):71-81, 121.  doi: 10.13272/j.issn.1671-251x.2023110030
WANG Jiawei, WANG Haijun, WU Hanning, et al. Research on transparency of hidden disaster causing factors in coal mines based on 3D geological modeling technology[J]. Journal of Mine Automation,2024,50(3):71-81, 121.  doi: 10.13272/j.issn.1671-251x.2023110030
Citation: WANG Jiawei, WANG Haijun, WU Hanning, et al. Research on transparency of hidden disaster causing factors in coal mines based on 3D geological modeling technology[J]. Journal of Mine Automation,2024,50(3):71-81, 121.  doi: 10.13272/j.issn.1671-251x.2023110030

基于三维地质建模技术的煤矿隐蔽致灾因素透明化研究

doi: 10.13272/j.issn.1671-251x.2023110030
基金项目: 国家自然科学基金项目(91855211);中煤科工集团西安研究院有限公司科技创新基金资助项目(2020XAYJC03)。
详细信息
    作者简介:

    王嘉伟(1999—),男,浙江宁波人,硕士研究生,研究方向为矿产普查与勘探,E-mail:1031654497@qq.com

    通讯作者:

    王海军(1985—),男,陕西榆林人,副研究员,硕士,研究方向为煤田地质勘查与矿井地质,E-mail:wanghaijun10000@163.com

    吴汉宁(1956—),男,陕西汉阴人,研究员,博士,博士研究生导师,研究方向为石油天然气地质、大地构造与区域构造及古地磁学,E-mail:Wuhn2506@nwu.edu.cn

  • 中图分类号: TD67

Research on transparency of hidden disaster causing factors in coal mines based on 3D geological modeling technology

  • 摘要: 隐蔽致灾因素是制约煤矿智能开采建设的关键问题,而三维地质建模是实现隐蔽致灾因素透明化的主要技术手段。目前煤矿三维地质建模技术以几何建模为主、属性建模为辅,缺少针对隐蔽致灾因素的灾害属性建模。针对上述问题,以陕北某煤矿作为研究对象,对煤层厚度、顶底板构造起伏、积水区、浅埋煤层地形地貌等隐蔽致灾因素进行三维地质建模。首先,完成对地质资料、物探、钻探等成果的数字化工作,建立煤矿地质数据库。其次,利用DepthInsight建模软件从全矿井和工作面2个尺度开展建模工作,即以钻孔分层数据作为地层控制点,通过煤层及地表等高线、虚拟钻孔等数据联合控制地层层序,并处理初始层面模型中的穿层异常,构建地层面模型和地质体模型,再运用数字高程模型对工作面进行地表模型构建。然后,采用岩体建模构建采空区、积水区模型并标注温度、气体等信息,利用工作面回采测量数据构建回采实测模型。最后,创建截断网格模型,通过序贯高斯模拟生成含水层渗透率、富水系数模型,实现区内水文隐蔽致灾因素透明化显示。基于三维地质模型,从地层、煤层及工作面、采空区及其积水区、水文属性多角度分析隐蔽致灾因素的分布及影响。研究成果可为煤矿隐蔽致灾因素的精准治理提供靶区,助力煤矿智能开采建设。

     

  • 图  1  研究区构造

    Figure  1.  Geological map of the study area

    图  2  三维地质建模流程

    Figure  2.  3D geological modeling flow

    图  3  初始层面及初始地质体模型

    Figure  3.  Initial level and initial geologic body model

    图  4  地层面模型

    Figure  4.  Ground level model

    图  5  地质体模型

    Figure  5.  Geological body model

    图  6  工作面地表模型

    Figure  6.  Surface model of working face

    图  7  煤层模型

    Figure  7.  Coal seam model

    图  8  工作面模型

    Figure  8.  Working face model

    图  9  采空区模型

    Figure  9.  Gob model

    图  10  回采实测模型

    Figure  10.  Mining measurement model

    图  11  积水区模型

    Figure  11.  Waterlogged area model

    图  12  富水系数模型及渗透率模型

    Figure  12.  Water-rich coefficient model and permeability model

  • [1] 张平松,李洁,李圣林,等. 三维地质建模在煤矿地质可视化中的应用分析[J]. 科学技术与工程,2022,22(5):1725-1740. doi: 10.3969/j.issn.1671-1815.2022.05.002

    ZHANG Pingsong,LI Jie,LI Shenglin,et al. Application status of 3D geological modeling in the development of coal mine intelligence[J]. Science Technology and Engineering,2022,22(5):1725-1740. doi: 10.3969/j.issn.1671-1815.2022.05.002
    [2] 王国法,任怀伟,赵国瑞,等. 煤矿智能化十大“痛点”解析及对策[J]. 工矿自动化,2021,47(6):1-11.

    WANG Guofa,REN Huaiwei,ZHAO Guorui,et al. Analysis and countermeasures of ten 'pain points' of intelligent coal mine[J]. Industry and Mine Automation,2021,47(6):1-11.
    [3] 聂子淇,周侃,潘启勇. 煤矿常见隐蔽致灾因素及其探查技术分析[J]. 矿产勘查,2020,11(11):2573-2579. doi: 10.3969/j.issn.1674-7801.2020.11.033

    NIE Ziqi,ZHOU Kan,PAN Qiyong. Analysis of common hidden disaster factors in coal mines and its exploration techniques[J]. Mineral Exploration,2020,11(11):2573-2579. doi: 10.3969/j.issn.1674-7801.2020.11.033
    [4] 袁亮,张平松. 煤炭精准开采地质保障技术的发展现状及展望[J]. 煤炭学报,2019,44(8):2277-2284.

    YUAN Liang,ZHANG Pingsong. Development status and prospect of geological guarantee technology for precise coal mining[J]. Journal of China Coal Society,2019,44(8):2277-2284.
    [5] 袁亮,张平松. 煤炭精准开采透明地质条件的重构与思考[J]. 煤炭学报,2020,45(7):2346-2356.

    YUAN Liang,ZHANG Pingsong. Framework and thinking of transparent geological conditions for precise mining of coal[J]. Journal of China Coal Society,2020,45(7):2346-2356.
    [6] 李青元,张洛宜,曹代勇,等. 三维地质建模的用途、现状、问题、趋势与建议[J]. 地质与勘探,2016,52(4):759-767.

    LI Qingyuan,ZHANG Luoyi,CAO Daiyong,et al. Usage,status,problems,trends and suggestions of 3D geological modeling[J]. Geology and Exploration,2016,52(4):759-767.
    [7] 范文遥,曹梦雪,路来君. 基于GOCAD软件的三维地质建模可视化过程[J]. 科学技术与工程,2020,20(24):9771-9778. doi: 10.3969/j.issn.1671-1815.2020.24.012

    FAN Wenyao,CAO Mengxue,LU Laijun. Visualization process of 3D geological modeling based on GOCAD software[J]. Science Technology and Engineering,2020,20(24):9771-9778. doi: 10.3969/j.issn.1671-1815.2020.24.012
    [8] 刘安强,王子童. 煤矿三维地质建模相关技术综述[J]. 能源与环保,2020,42(8):136-141.

    LIU Anqiang,WANG Zitong. Overview of 3D geological modeling technology in coal mine[J]. China Energy and Environmental Protection,2020,42(8):136-141.
    [9] 谷保泽,代振华,李明星,等. 透明地质保障技术构建方法——以乌海矿区为例[J]. 煤田地质与勘探,2022,50(1):136-143. doi: 10.12363/issn.1001-1986.21.10.0601

    GU Baoze,DAI Zhenhua,LI Mingxing,et al. Construction method on transparent geological guarantee technologies:a case study of Wuhai mining area[J]. Coal Geology & Exploration,2022,50(1):136-143. doi: 10.12363/issn.1001-1986.21.10.0601
    [10] 向中林,顾雪祥,章永梅,等. 基于三维地质建模及可视化的大比例尺深部找矿预测研究及应用:以内蒙古柳坝沟矿区为例[J]. 地学前缘,2014,21(5):227-235.

    XIANG Zhonglin,GU Xuexiang,ZHANG Yongmei,et al. Research and application of large scale deep mineral prospecting prediction based on 3D geological modeling and visualization:a case from Liubagou gold field,Inner Mongolia[J]. Earth Science Frontiers,2014,21(5):227-235.
    [11] 朱战斌,王泽亮,王宏伟,等. 马泰壕煤矿智能化开采地质构造三维可视化模型构筑关键技术研究[J]. 中国煤炭,2021,47(增刊1):103-110.

    ZHU Zhanbin,WANG Zeliang,WANG Hongwei,et al. Research on key technology of 3D visualization model construction of geological structure for intelligent mining of Mataihao Coal Mine[J]. China Coal,2021,47(S1):103-110.
    [12] 程建远,刘文明,朱梦博,等. 智能开采透明工作面地质模型梯级优化试验研究[J]. 煤炭科学技术,2020,48(7):118-126.

    CHENG Jianyuan,LIU Wenming,ZHU Mengbo,et al. Experimental study on cascade optimization of geological models in intelligent mining transparency working face[J]. Coal Science and Technology,2020,48(7):118-126.
    [13] 厉飓洲,李国清,侯杰,等. 基于序贯高斯模拟的露天矿境界优化[J]. 矿业研究与开发,2020,40(8):20-26.

    LI Juzhou,LI Guoqing,HOU Jie,et al. Boundary optimization of open-pit mine based on sequential Gaussian simulation[J]. Mining Research and Development,2020,40(8):20-26.
    [14] 刘晓飞,刘金辉,阳奕汉,等. 巴彦乌拉铀矿床精细三维地质建模[J]. 有色金属(冶炼部分),2022(11):54-63. doi: 10.3969/j.issn.1007-7545.2022.11.009

    LIU Xiaofei,LIU Jinhui,YANG Yihan,et al. Fine 3D geological modeling of Bayanwula uranium deposit[J]. Nonferrous Metals(Extractive Metallurgy),2022(11):54-63. doi: 10.3969/j.issn.1007-7545.2022.11.009
    [15] 张俊安,刘瑞刚,杨钦,等. 复杂地质结构的四维地质层面自动生成算法[J]. 北京航空航天大学学报,2007,33(9):1094-1098. doi: 10.3969/j.issn.1001-5965.2007.09.022

    ZHANG Jun'an,LIU Ruigang,YANG Qin,et al. Auto-construction algorithm of four-dimensional(4D) geological stratum on complex geological structure[J]. Journal of Beijing University of Aeronautics and Astronautics,2007,33(9):1094-1098. doi: 10.3969/j.issn.1001-5965.2007.09.022
    [16] 孟宪海,杨钦,李吉刚. 基于层面结构的三维闭合地质区块构造算法[J]. 北京航空航天大学学报,2005,31(2):182-186. doi: 10.3969/j.issn.1001-5965.2005.02.016

    MENG Xianhai,YANG Qin,LI Jigang. Construction of coherent 3D geological blocks from stratified geological structure[J]. Journal of Beijing University of Aeronautics and Astronautics,2005,31(2):182-186. doi: 10.3969/j.issn.1001-5965.2005.02.016
    [17] 刘小雄,王海军. 薄煤层智能开采工作面煤层透明化地质勘查技术[J]. 煤炭科学技术,2022,50(7):67-74.

    LIU Xiaoxiong,WANG Haijun. Transparent geological exploration technology of coal seam on the working surface of intelligent mining of thin coal seam[J]. Coal Science and Technology,2022,50(7):67-74.
    [18] 桑向阳,王海军,吴敏杰,等. 智能开采工作面煤岩层地球物理测井对比技术[J]. 煤炭技术,2023,42(8):108-112.

    SANG Xiangyang,WANG Haijun,WU Minjie,et al. Geophysical logging and comparison technology of coal rock formation in intelligent mining face[J]. Coal Technology,2023,42(8):108-112.
    [19] 王海军,曹云,王洪磊. 煤矿智能化关键技术研究与实践[J]. 煤田地质与勘探,2023,51(1):44-54. doi: 10.12363/issn.1001-1986.22.12.0992

    WANG Haijun,CAO Yun,WANG Honglei. Research and practice on key technologies for intelligentization of coal mine[J]. Coal Geology & Exploration,2023,51(1):44-54. doi: 10.12363/issn.1001-1986.22.12.0992
    [20] 董书宁,刘再斌,程建远,等. 煤炭智能开采地质保障技术及展望[J]. 煤田地质与勘探,2021,49(1):21-31. doi: 10.3969/j.issn.1001-1986.2021.01.003

    DONG Shuning,LIU Zaibin,CHENG Jianyuan,et al. Technologies and prospect of geological guarantee for intelligent coal mining[J]. Coal Geology & Exploration,2021,49(1):21-31. doi: 10.3969/j.issn.1001-1986.2021.01.003
    [21] 刘再斌,刘程,刘文明,等. 透明工作面多属性动态建模技术[J]. 煤炭学报,2020,45(7):2628-2635.

    LIU Zaibin,LIU Cheng,LIU Wenming,et al. Multi-attribute dynamic modeling technique for transparent working face[J]. Journal of China Coal Society,2020,45(7):2628-2635.
    [22] 吴敏杰. 神北炭灰沟煤矿隐蔽致灾因素探查及分析[J]. 煤矿安全,2023,54(5):252-256.

    WU Minjie. Exploration and analysis of hidden disaster factors in North Shenmu Tanhuigou Coal Mine[J]. Safety in Coal Mines,2023,54(5):252-256.
    [23] 吴敏杰,王相业,张金贵,等. 神北矿区庙梁煤矿隐蔽致灾因素探查与分析[J]. 中国煤炭,2023,49(1):35-43. doi: 10.3969/j.issn.1006-530X.2023.01.005

    WU Minjie,WANG Xiangye,ZHANG Jingui,et al. Exploration and analysis of hidden disaster-causing factors in Miaoliang Coal Mine in Shenbei Mining Area[J]. China Coal,2023,49(1):35-43. doi: 10.3969/j.issn.1006-530X.2023.01.005
    [24] 朱玉英,王海军,吴艳. 神北矿区河西联办煤矿隐蔽致灾因素分析[J]. 能源与环保,2023,45(6):46-52.

    ZHU Yuying,WANG Haijun,WU Yan. Analysis on hidden disaster factors in Hexi Joint Office Coal Mine in Shenbei Mining Area[J]. China Energy and Environmental Protection,2023,45(6):46-52.
    [25] 王国法,张建中,薛国华,等. 煤矿回采工作面智能地质保障技术进展与思考[J]. 煤田地质与勘探,2023,51(2):12-26.

    WANG Guofa,ZHANG Jianzhong,XUE Guohua,et al. Progress and reflection of intelligent geological guarantee technology in coal mining face[J]. Coal Geology & Exploration,2023,51(2):12-26.
    [26] 王海军,刘善德,马良,等. 面向智能化开采的矿井煤岩层综合对比技术[J]. 煤田地质与勘探,2022,50(2):24-38. doi: 10.12363/issn.1001-1986.21.04.0238

    WANG Haijun,LIU Shande,MA Liang,et al. Comprehensive correlation technology of coal and rock layers in mines for intelligent mining[J]. Coal Geology & Exploration,2022,50(2):24-38. doi: 10.12363/issn.1001-1986.21.04.0238
    [27] 靳德武,李鹏,赵春虎,等. 采场三维充水结构地质建模及动态可视化实现[J]. 煤炭科学技术,2020,48(7):143-149.

    JIN Dewu,LI Peng,ZHAO Chunhu,et al. Geological modeling and implementation on dynamic visualization of three-dimensional water filling structure in stope of underground mine[J]. Coal Science and Technology,2020,48(7):143-149.
    [28] 吴敏杰. 无人机在煤矿地表隐蔽灾害排查中的应用[J]. 煤矿安全,2021,52(11):123-129.

    WU Minjie. Application of unmanned aerial vehicle in the investigation of hidden disasters on coal mine surface[J]. Safety in Coal Mines,2021,52(11):123-129.
    [29] 王海军,吴艳,马良,等. 陕北浅埋煤层一体化漏风通道探查技术[J]. 煤矿安全,2023,54(4):83-90.

    WANG Haijun,WU Yan,MA Liang,et al. Exploration technology of integrated air leakage channel of shallow buried coal seam in northern Shaanxi Province[J]. Safety in Coal Mines,2023,54(4):83-90.
    [30] 王海军,马良. 陕北侏罗纪煤田三角洲平原沉积环境及其岩石力学特征[J]. 煤田地质与勘探,2019,47(3):61-69. doi: 10.3969/j.issn.1001-1986.2019.03.011

    WANG Haijun,MA Liang. Study on sediment environment and rock mechanics characteristics of the delta plain of Jurassic coalfield in northern Shaanxi[J]. Coal Geology & Exploration,2019,47(3):61-69. doi: 10.3969/j.issn.1001-1986.2019.03.011
    [31] 毛善君,崔建军,令狐建设,等. 透明化矿山管控平台的设计与关键技术[J]. 煤炭学报,2018,43(12):3539-3548.

    MAO Shanjun,CUI Jianjun,LINGHU Jianshe,et al. System design and key technology of transparent mine management and control platform[J]. Journal of China Coal Society,2018,43(12):3539-3548.
    [32] 王国法,孟令宇. 煤矿智能化及其技术装备发展[J]. 中国煤炭,2023,49(7):1-13.

    WANG Guofa,MENG Lingyu. Development of coal mine intelligence and its technical equipment[J]. China Coal,2023,49(7):1-13.
    [33] 王海军,刘再斌,雷晓荣,等. 煤矿巷道三维激光扫描关键技术及工程实践[J]. 煤田地质与勘探,2022,50(1):109-117. doi: 10.12363/issn.1001-1986.21.10.0589

    WANG Haijun,LIU Zaibin,LEI Xiaorong,et al. Key technologies and engineering practice of 3D laser scanning in coal mine roadways[J]. Coal Geology & Exploration,2022,50(1):109-117. doi: 10.12363/issn.1001-1986.21.10.0589
    [34] 王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术,2022,50(1):1-27.

    WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology,2022,50(1):1-27.
    [35] 陈龙,郭军,张建中. 三维模型轻量化技术[J]. 工矿自动化,2021,47(5):116-120.

    CHEN Long,GUO Jun,ZHANG Jianzhong. 3D model lightweight technology[J]. Industry and Mine Automation,2021,47(5):116-120.
    [36] 赵常辛,刘海青. 煤矿智能化开采技术研究现状及展望[J]. 工矿自动化,2022,48(增刊2):27-29.

    ZHAO Changxin,LIU Haiqing. Research status and prospect of intelligent mining technology in coal mine[J]. Journal of Mine Automation,2022,48(S2):27-29.
  • 加载中
图(12)
计量
  • 文章访问数:  50
  • HTML全文浏览量:  10
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-09
  • 修回日期:  2024-04-07
  • 网络出版日期:  2024-04-11

目录

    /

    返回文章
    返回