留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种长巷道形变监测中轴线提取及断面构建方法

陈晓伟 陈雷 李猛 胡成军 宋磊 袁鹏喆

陈晓伟,陈雷,李猛,等. 一种长巷道形变监测中轴线提取及断面构建方法[J]. 工矿自动化,2024,50(2):35-41.  doi: 10.13272/j.issn.1671-251x.2023090077
引用本文: 陈晓伟,陈雷,李猛,等. 一种长巷道形变监测中轴线提取及断面构建方法[J]. 工矿自动化,2024,50(2):35-41.  doi: 10.13272/j.issn.1671-251x.2023090077
CHEN Xiaowei, CHEN Lei, LI Meng, et al. A method for extracting axis and constructing section in long roadway deformation monitoring[J]. Journal of Mine Automation,2024,50(2):35-41.  doi: 10.13272/j.issn.1671-251x.2023090077
Citation: CHEN Xiaowei, CHEN Lei, LI Meng, et al. A method for extracting axis and constructing section in long roadway deformation monitoring[J]. Journal of Mine Automation,2024,50(2):35-41.  doi: 10.13272/j.issn.1671-251x.2023090077

一种长巷道形变监测中轴线提取及断面构建方法

doi: 10.13272/j.issn.1671-251x.2023090077
基金项目: 国家自然科学基金项目(52104196)。
详细信息
    作者简介:

    陈晓伟(1983—),男,山西大同人,工程师,主要从事煤炭采掘方面的研究工作,E-mail:112652385@qq.com

  • 中图分类号: TD353

A method for extracting axis and constructing section in long roadway deformation monitoring

  • 摘要: 三维激光扫描技术被广泛用于长巷道形变监测技术的研究中,但目前的研究存在多次扫描采集到的点云数据基准点移位现象;采集到的相邻点云数据公共特征不明显,多站点云拼接后会导致累计误差增大;超前巷道形变受超前支架的影响。针对上述问题,以传统十字点法中顶底板中点与两帮重点交叉的方法为基础,提出了一种基于最小二乘法的巷道中轴线提取方法。巷道定义的直角坐标系的原点位于激光束发射处,z轴位于激光扫描器的竖向扫描面内;xy轴均位于仪器的横向扫描面内,中轴线反映了巷道整体的走向和姿态。在巷道掘进完成未受采动影响时,整条巷道进行第一遍扫描,通过最小二乘法确定整条巷道的中心点,将各中心点连接并拟合出一条完整的中轴线。在后续的巷道变形监测中,每监测一次均通过第一次的中点位置进行点云数据叠加,准确获得巷道断面内各个点云的变化情况,进而获得巷道的形变。基于拟合的中轴线构建巷道断面。采用三维激光扫描系统在塔山煤矿30507工作面回风巷对巷道形变进行了测试,结果表明:① 巷道形变随着测点距工作面距离的增大而变小,且30507工作面回风巷的超前影响范围为150 m,巷道形变的最大点位于底板临近采空区一侧。② 三维激光扫描和微震监测系统确定的超前范围接近,说明在进入150 m时支护煤体已经开始受力,且巷道形变的最大点位于底板临近采空区一侧,而不是十字点观测法观测的底板,证明三维激光扫描结果更为精确,且极大地降低了作业强度。

     

  • 图  1  激光扫描仪原理

    Figure  1.  Principle of the laser scanner

    图  2  巷道坐标系建模

    Figure  2.  Modeling of roadway coordinate system

    图  3  最下二乘法

    Figure  3.  Least-square method

    图  4  测点布置

    Figure  4.  Layout of measuring points

    图  5  激光扫描设备

    Figure  5.  Laser scanning equipment

    图  6  去噪前后对比结果

    Figure  6.  Comparing results before and after denoising

    图  7  巷道形变对比云图

    Figure  7.  Cloud chart of roadway deformation comparison

    表  1  测点数据

    Table  1.   Measuring point data

    测点距工作面距离/m最大形变量/mm影响范围/m
    150310.3
    120612.6
    701118.8
    下载: 导出CSV

    表  2  不同监测方法精度对比

    Table  2.   Accuracy comparison of different monitoring methods

    监测方法超前范围/m最大形变量/mm最大形变位置
    三维激光扫描15093临空侧小煤柱靠底板处
    微震监测系统145
    十字点观测法11087顶底板
    下载: 导出CSV
  • [1] 姜阔胜,李良和,韩刘帮,等. 基于激光雷达技术的矿井巷道变形在线监测[J]. 北京信息科技大学学报(自然科学版),2020,35(5):1-4.

    JIANG Kuosheng,LI Lianghe,HAN Liubang,et al. On-line monitoring of mine tunnel deformation based on laser radar technology[J]. Journal of Beijing Information Science & Technology University,2020,35(5):1-4.
    [2] 王国法,杜毅博. 智慧煤矿与智能化开采技术的发展方向[J]. 煤炭科学技术,2019,47(1):1-10.

    WANG Guofa,DU Yibo. Development direction of intelligent coal mine and intelligent mining technology[J]. Coal Science and Technology,2019,47(1):1-10.
    [3] 杨洪涛,于印,许吉禅,等. 基于线扫描原理的煤矿巷道变形测量系统[J]. 工矿自动化,2022,48(7):113-117,148.

    YANG Hongtao,YU Yin,XU Jichan,et al. Coal mine roadway deformation measurement system based on line scanning principle[J]. Journal of Mine Automation,2022,48(7):113-117,148.
    [4] 李甲,王文杰,尹东. 基于改进灰色Verhulst模型的巷道变形破坏预警方法研究及应用[J]. 矿业安全与环保,2022,49(2):66-71.

    LI Jia,WANG Wenjie,YIN Dong. Research and application of early warning method of roadway deformation based on improved grey Verhulst model[J]. Mining Safety & Environmental Protection,2022,49(2):66-71.
    [5] 张华,李靖锋,魏红磊,等. 基于智能视频识别技术的智能化煤矿安全管理研究与应用[J]. 工矿自动化,2021,47(增刊1):10-13.

    ZHANG Hua,LI Jingfeng,WEI Honglei,et al. Research and application of intelligent coal mine safety management based on intelligent video recognition technology[J]. Industry and Mine Automation,2021,47(S1):10-13.
    [6] 张平松,李洁,李圣林,等. 三维地质建模在煤矿地质可视化中的应用分析[J]. 科学技术与工程,2022,22(5):1725-1740.

    ZHANG Pingsong,LI Jie,LI Shenglin,et al. Application status of 3D geological modeling in the development of coal mine intelligence[J]. Science Technology and Engineering,2022,22(5):1725-1740.
    [7] 王海军,刘再斌,雷晓荣,等. 煤矿巷道三维激光扫描关键技术及工程实践[J]. 煤田地质与勘探,2022,50(1):109-117. doi: 10.12363/issn.1001-1986.21.10.0589

    WANG Haijun,LIU Zaibin,LEI Xiaorong,et al. Key technologies and engineering practice of 3D laser scanning in coal mine roadways[J]. Coal Geology & Exploration,2022,50(1):109-117. doi: 10.12363/issn.1001-1986.21.10.0589
    [8] 李梅,康济童,刘晖,等. 基于BIM与GIS的矿山巷道参数化三维建模技术研究[J]. 煤炭科学技术,2022,50(7):25-35.

    LI Mei,KANG Jitong,LIU Hui,et al. Study on parametric 3D modeling technology of mine roadway based on BIM and GIS[J]. Coal Science and Technology,2022,50(7):25-35.
    [9] 余洋,刘昌华,王世东,等. 三维激光扫描测量在植被参数提取中的应用[J]. 河南理工大学学报(自然科学版),2022,41(4):51-57.

    YU Yang,LIU Changhua,WANG Shidong,et al. Applications of 3D laser scanning technology in the extraction of vegetation parameters[J]. Journal of Henan Polytechnic University(Natural Science),2022,41(4):51-57.
    [10] 王腾,查剑锋,张民,等. 基于三维激光扫描的矿区道路沉陷监测研究[J]. 煤炭工程,2021,53(3):161-165.5.

    WANG Teng,ZHA Jianfeng,ZHANG Min,et al. Monitoring of mining area road subsidence based on 3D laser scanning[J]. Coal Engineering,2021,53(3):161-165.
    [11] 荣耀,曹琼,安晓宇,等. 综采工作面三维激光扫描建模关键技术研究[J]. 工矿自动化,2022,48(10):82-87.

    RONG Yao,CAO Qiong,AN Xiaoyu,et al. Research on key technologies of 3D laser scanning modeling in fully mechanized working face[J]. Journal of Mine Automation,2022,48(10):82-87.
    [12] 张琰,孔祥思,徐西桂. 基于移动三维激光扫描的隧道结构监测方案研究与应用[J]. 矿山测量,2021,49(1):20-25.

    ZHANG Yan,KONG Xiangsi,XU Xigui. Application and research of tunnel structure monitoring solution based on moving 3D laser scanning system[J]. Mine Surveying,2021,49(1):20-25.
    [13] 郭良林,周大伟,张德民,等. 基于激光点云的巷道变形监测及支护研究[J]. 煤矿安全,2020,51(8):178-183.

    GUO Lianglin,ZHOU Dawei,ZHANG Demin,et al. Research on deformation monitoring and supporting of tunnel based on laser point cloud[J]. Safety in Coal Mines,2020,51(8):178-183.
    [14] 刘晓阳,胡乔森,李慧娟. 基于三维激光扫描技术的巷道顶板监测研究[J]. 中国煤炭,2017,43(7):81-84,107.

    LIU Xiaoyang,HU Qiaosen,LI Huijuan. Research on coal mine roof monitoring based on three-dimensional laser scanning technology[J]. China Coal,2017,43(7):81-84,107.
    [15] 杨丁亮,邹进贵. 长大隧道点云的绝对定位配准方法[J]. 测绘通报,2022(增刊2):179-184.

    YANG Dingliang,ZOU Jingui. Point cloud registration method by absolute control in long tunnel[J]. Bulletin of Surveying and Mapping,2022(S2):179-184.
    [16] 金卓,王占利,张自宾. 基于三维激光扫描的矿井开拓巷道围岩变形测量技术研究[J]. 应用激光,2020,40(6):1120-1125.

    JIN Zhuo,WANG Zhanli,ZHANG Zibin. Research on measurement technology of surrounding rock deformation of mine development roadway based on 3D laser scanning[J]. Applied Laser,2020,40(6):1120-1125.
    [17] 郑理科,王健,李志远,等. 一种局部最优邻域法向量估算的巷道点云去噪方法[J]. 测绘科学,2023,48(4):140-148,171.

    ZHENG Like,WANG Jian,LI Zhiyuan,et al. A denoising method of roadway point cloud based on local optimal neighborhood normal vector estimation[J]. Science of Surveying and Mapping,2023,48(4):140-148,171.
    [18] 常巧梅,杨静,阎跃观. 基于三维激光扫描技术的巷道变形测量方法[J]. 煤炭技术,2023,42(6):30-32.

    CHANG Qiaomei,YANG Jing,YAN Yueguan. Roadway deformation measurement method based on 3D laser scanning technology[J]. Coal Technology,2023,42(6):30-32.
    [19] 李小鹏,刘少伟,付孟雄,等. 密集钻孔切顶卸压关键参数影响因素研究及应用[J]. 煤炭科学技术,2023,51(12):243-253.

    LI Xiaopeng,LIU Shaowei,FU Mengxiong,et al. Research and application of influencing factors of key parameters of roof cutting and pressure relief by dense drilling[J]. Coal Science and Technology,2023,51(12):243-253.
    [20] 黄炜伟. 基于粒子群的全空间瞬变电磁二维反演方法研究[J]. 工矿自动化,2021,47(4):79-84.

    HUANG Weiwei. Research on two-dimensional inversion method of transient electromagnetic in whole-space based on particle swarm[J]. Industry and Mine Automation,2021,47(4):79-84.
    [21] 张宇航,杨武年,任金铜,等. 高分二号卫星影像自适应模糊阈值法小波去噪[J]. 测绘通报,2019(3):32-35.

    ZHANG Yuhang,YANG Wunian,REN Jintong,et al. Adaptive fuzzy threshold method wavelet denoising of GF-2 satellite image[J]. Bulletin of Surveying and Mapping,2019(3):32-35.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  86
  • HTML全文浏览量:  28
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-25
  • 修回日期:  2024-02-05
  • 网络出版日期:  2024-03-02

目录

    /

    返回文章
    返回