留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度学习的矿井滚动轴承故障诊断方法

窦桂东 白艺硕 王均利 黄博昊 阳康

窦桂东,白艺硕,王均利,等. 基于深度学习的矿井滚动轴承故障诊断方法[J]. 工矿自动化,2024,50(1):96-103, 154.  doi: 10.13272/j.issn.1671-251x.2023070085
引用本文: 窦桂东,白艺硕,王均利,等. 基于深度学习的矿井滚动轴承故障诊断方法[J]. 工矿自动化,2024,50(1):96-103, 154.  doi: 10.13272/j.issn.1671-251x.2023070085
DOU Guidong, BAI Yishuo, WANG Junli, et al. A fault diagnosis method for mine rolling bearings based on deep learning[J]. Journal of Mine Automation,2024,50(1):96-103, 154.  doi: 10.13272/j.issn.1671-251x.2023070085
Citation: DOU Guidong, BAI Yishuo, WANG Junli, et al. A fault diagnosis method for mine rolling bearings based on deep learning[J]. Journal of Mine Automation,2024,50(1):96-103, 154.  doi: 10.13272/j.issn.1671-251x.2023070085

基于深度学习的矿井滚动轴承故障诊断方法

doi: 10.13272/j.issn.1671-251x.2023070085
基金项目: 国家自然科学基金资助项目(52074305)。
详细信息
    作者简介:

    窦桂东(1983—),男,山东泰安人,高级工程师,从事煤矿智能化研究和应用工作,E-mail:313934867@qq.com

    通讯作者:

    白艺硕(1999—),女,河南南阳人,硕士研究生,研究方向为深度学习与故障诊断,E-mail:bys1311@163.com

  • 中图分类号: TD67

A fault diagnosis method for mine rolling bearings based on deep learning

  • 摘要: 针对传统卷积神经网络在煤矿井下等复杂环境中难以充分挖掘数据特征等问题,提出了一种基于马尔可夫转移场(MTF)和双通道多尺度卷积胶囊网络(DMCCN)的矿井滚动轴承故障诊断方法,构建了MTF−DMCCN故障诊断模型。根据MTF和灰度图对原始振动信号进行编码后,采用双通道输入模式连接卷积网络获取浅层特征;将特征图进行融合后输入到胶囊网络,提高模型对空间信息的敏感度;在网络中引入Inception模块,聚焦多尺度特征,加强网络的特征提取能力;通过胶囊层进行向量化处理,实现滚动轴承的故障诊断与分类。消融实验、抗噪性及泛化性实验结果表明:Inception模块、灰度图输入、MTF图像输入均对轴承故障诊断具有正向促进的作用,MTF编码对模型的诊断精度提升最高;MTF−DMCCN模型具有较好的鲁棒性和抗噪声能力;MTF−DMCCN模型具有优异的变转速适应能力,在不同工况条件下具有良好的泛化性能。为进一步验证模型性能,选取格拉姆角差场(GADF)、格拉姆角和场(GASF)、灰度图、MTF等图像编码方式与不同网络相结合,采用辛辛那提大学数据集(IMS)进行对比实验,结果表明,MTF−DMCCN模型能有效识别滚动轴承故障类型,平均故障诊断准确率达99.37%。

     

  • 图  1  胶囊网络结构

    Figure  1.  Capsule network structure

    图  2  动态路由算法结构

    Figure  2.  Dynamic routing algorithm structure

    图  3  MTF−DMCCN故障诊断模型

    Figure  3.  Fault diagnosis model based on Markov transition field(MTF) and dual-channel multi-scale convolutional capsule network(DMCCN)

    图  4  胶囊传递中的权值更新

    Figure  4.  Weight update in capsule delivery

    图  5  不同尺寸的MTF图像

    Figure  5.  MTF images of different sizes

    图  6  不同模型的混淆矩阵

    Figure  6.  Confusion matrix of different models

    图  7  各模型在不同噪声环境下的混淆雷达图

    Figure  7.  Confusing radargrams of each model in different noise environment

    图  8  IMS数据集下不同模型的识别准确率

    Figure  8.  Recognition accuracy of different models in the IMS dataset

    表  1  单一工况下轴承故障数据组成

    Table  1.   Composition of bearing failure data under single operating conditions

    样本名称 样本类型 样本个数 标签
    IF07 内圈故障 600 0
    IF14 内圈故障 600 1
    IF21 内圈故障 600 2
    OF07 外圈故障 600 3
    OF14 外圈故障 600 4
    OF21 外圈故障 600 5
    BF07 滚动体故障 600 6
    BF14 滚动体故障 600 7
    BF21 滚动体故障 600 8
    VMF 垂直不对中故障 600 9
    HMF 水平不对中故障 600 10
    N 正常状态 600 11
    下载: 导出CSV

    表  2  不同工况条件下的数据集参数

    Table  2.   Dataset parameters under different operating conditions

    数据集 电动机负载/kW 电动机转速/(r·min−1 样本个数
    A 0 1 797 7 200
    B 0.746 1 772 7 200
    C 1.491 1 750 7 200
    下载: 导出CSV

    表  3  不同模型的识别结果

    Table  3.   Recognition results of different models

    模型 识别准确率/% 运行时间/s
    MTF−DMCCN 99.44 156.84
    MTF−DCCN 83.72 141.15
    MTF−MCCN 94.61 315.29
    DMCCN 72.94 105.98
    下载: 导出CSV

    表  4  变工况下的故障识别准确率

    Table  4.   Fault recognition accuracy under variable operating conditions %

    实验工况 识别准确率
    实验1 实验2 实验3 实验4 实验5 均值
    A→B 81.5 90.6 80.4 80.7 82.3 83.1
    A→C 89.2 87.6 88.9 91.3 84.0 88.2
    B→A 78.5 71.6 78.1 73.6 79.7 76.3
    B→C 80.2 77.1 79.3 83.1 81.8 80.3
    C→A 77.6 76.9 77.2 80.9 83.4 79.2
    C→B 81.7 91.0 82.3 86.6 80.9 84.5
    下载: 导出CSV
  • [1] 张旭辉,潘格格,郭欢欢,等. 基于深度迁移学习的采煤机摇臂部滚动轴承故障诊断方法[J]. 煤炭科学技术,2022,50(4):256-263.

    ZHANG Xuhui,PAN Gege,GUO Huanhuan,et al. Fault diagnosis method for rolling bearing on shearer arm based on deep transfer learning[J]. Coal Science and Technology,2022,50(4):256-263.
    [2] 郭秀才,吴妮,曹鑫. 基于特征融合与DBN的矿用通风机滚动轴承故障诊断[J]. 工矿自动化,2021,47(10):14-20,26.

    GUO Xiucai,WU Ni,CAO Xin. Fault diagnosis of rolling bearing of mine ventilator based on characteristic fusion and DBN[J]. Industry and Mine Automation,2021,47(10):14-20,26.
    [3] ZHANG Xiaochen,CONG Yiwen,YUAN Zhe,et al. Early fault detection method of rolling bearing based on MCNN and GRU network with an attention mechanism[J]. Shock and Vibration,2021. DOI: 10.1155/2021/6660243.
    [4] ZHENG Zhi,FU Jiuman,LU Chuanqi,et al. Research on rolling bearing fault diagnosis of small dataset based on a new optimal transfer learning network[J]. Measurement,2021,177. DOI: 10.1016/J.MEASUREMENT.2021.109285.
    [5] 史志远,滕虎,马驰. 基于多信息融合和卷积神经网络的行星齿轮箱故障诊断[J]. 工矿自动化,2022,48(9):56-62.

    SHI Zhiyuan,TENG Hu,MA Chi. Fault diagnosis of planetary gearbox based on multi-information fusion and convolutional neural network[J]. Journal of Mine Automation,2022,48(9):56-62.
    [6] 姚齐水,别帅帅,余江鸿,等. 一种结合改进Inception V2模块和CBAM的轴承故障诊断方法[J]. 振动工程学报,2022,35(4):949-957.

    YAO Qishui,BIE Shuaishuai,YU Jianghong,et al. A bearing fault diagnosis method combining improved inception V2 module and CBAM[J]. Journal of Vibration Engineering,2022,35(4):949-957.
    [7] SABOUR S,FROSST N,HINTON G E. Dynamic routing between capsules[EB/OL]. [2023-06-05]. https://arxiv.org/abs/1710.09829.
    [8] 王超群,李彬彬,焦斌. 基于门控循环单元胶囊网络的滚动轴承故障诊断[J]. 轴承,2021(5):56-62.

    WANG Chaoqun,LI Binbin,JIAO Bin. Fault diagnosis for rolling bearings based on capsule network of gated recurrent unit[J]. Bearing,2021(5):56-62.
    [9] CHEN Tianyou,WANG Zhihua,YANG Xiang,et al. A deep capsule neural network with stochastic delta rule for bearing fault diagnosis on raw vibration signals[J]. Measurement,2019,148. DOI: 10.1016/j.measurement.2019.106857.
    [10] WEN Long,LI Xinyu,GAO Liang,et al. A new convolutional neural network-based data-driven fault diagnosis method[J]. IEEE Transactions on Industrial Electronics,2018,65(7):5990-5998. doi: 10.1109/TIE.2017.2774777
    [11] LIANG Pengfei,DENG Chao,WU Jun,et al. Single and simultaneous fault diagnosis of gearbox via a semi-supervised and high-accuracy adversarial learning framework[J]. Knowledge-Based Systems,2020,198. DOI: 10.1016/j.knosys.2020.105895.
    [12] YAN Jialin,KAN Jiangming,LUO Haifeng. Rolling bearing fault diagnosis based on Markov transition field and residual network[J]. Sensors,2022,22(10). DOI: 10.3390/S22103936.
    [13] WANG Mengjiao,WANG Wenjie,ZHANG Xinan,et al. A new fault diagnosis of rolling bearing based on Markov transition field and CNN[J]. Entropy,2022,24(6). DOI: 10.3390/E24060751.
    [14] 姜家国,郭曼利. 基于MTF和DenseNet的滚动轴承故障诊断方法[J]. 工矿自动化,2022,48(9):63-68.

    JIANG Jiaguo,GUO Manli. Fault diagnosis method of rolling bearing based on MTF and DenseNet[J]. Journal of Mine Automation,2022,48(9):63-68.
    [15] 赵志宏,李春秀,窦广鉴,等. 基于MTF−CNN的轴承故障诊断研究[J]. 振动与冲击,2023,42(2):126-131.

    ZHAO Zhihong,LI Chunxiu,DOU Guangjian,et al. Bearing fault diagnosis method based on MTF-CNN[J]. Journal of Vibration and Shock,2023,42(2):126-131.
    [16] 瞿红春,朱伟华,高鹏宇,等. 基于注意力循环胶囊网络的滚动轴承故障诊断[J]. 振动. 测试与诊断,2022,42(6):1108-1114,1243.

    QU Hongchun,ZHU Weihua,GAO Pengyu,et al. Fault diagnosis of rolling bearing based on attention recurrent capsule network[J]. Journal of Vibration,Measurement & Diagnosis,2022,42(6):1108-1114,1243.
    [17] PECHYONKIN M. Understanding Hinton's capsule networks. Part 3. Dynamic routing between capsules[EB/OL]. [2023-06-05]. https://pechyonkin.me/capsules-3/.
    [18] Bearing Data Center of Case Western Reserve University. Seeded fault test data [EB/OL]. [2023-06-05]. https://engineering.case.edu/bearingdatacenter/.
    [19] LEE J,QIU H,YU G,et al. Bearing data set[EB/OL]. [2023-06-05]. https://data.nasa.gov/download/brfb-gzcv/application%2Fzip.
    [20] ZHANG Wei,PENG Gaoliang,LI Chuanhao,et al. A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals[J]. Sensors,2017,17(2). DOI: 10.3390/s17020425.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  133
  • HTML全文浏览量:  25
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-24
  • 修回日期:  2024-01-12
  • 网络出版日期:  2024-01-31

目录

    /

    返回文章
    返回