留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于图像灰度识别的煤泥水絮凝沉降速率快速检测方法

耿延兵 王章国

耿延兵,王章国. 基于图像灰度识别的煤泥水絮凝沉降速率快速检测方法[J]. 工矿自动化,2023,49(12):87-93.  doi: 10.13272/j.issn.1671-251x.2023050083
引用本文: 耿延兵,王章国. 基于图像灰度识别的煤泥水絮凝沉降速率快速检测方法[J]. 工矿自动化,2023,49(12):87-93.  doi: 10.13272/j.issn.1671-251x.2023050083
GENG Yanbing, WANG Zhangguo. A fast detection method for slime water flocculation and sedimentation rate based on image grayscale recognition[J]. Journal of Mine Automation,2023,49(12):87-93.  doi: 10.13272/j.issn.1671-251x.2023050083
Citation: GENG Yanbing, WANG Zhangguo. A fast detection method for slime water flocculation and sedimentation rate based on image grayscale recognition[J]. Journal of Mine Automation,2023,49(12):87-93.  doi: 10.13272/j.issn.1671-251x.2023050083

基于图像灰度识别的煤泥水絮凝沉降速率快速检测方法

doi: 10.13272/j.issn.1671-251x.2023050083
基金项目: 国家自然科学基金项目(51604273)。
详细信息
    作者简介:

    耿延兵(1977—),男,河南襄城人,高级工程师,研究方向为选煤厂智能化设计及施工管理,E-mail:zx_gyb@163.com

    通讯作者:

    王章国(1981—),男,山东临沂人,讲师,博士,研究方向为选煤厂信息化与智能化决策算法,E-mail:wzguom@163.com

  • 中图分类号: TD67/948

A fast detection method for slime water flocculation and sedimentation rate based on image grayscale recognition

  • 摘要:

    目前矿物组成等影响煤泥水絮凝沉降效果的重要参数缺乏有效的在线检测手段,而浓缩池溢流浊度和界面又存在滞后性问题,限制了选煤厂煤泥水智能加药的发展。针对该问题,提出了基于图像灰度识别的煤泥水絮凝沉降速率快速检测方法。利用CCD相机在线采集煤泥水沉降过程图像,并通过均值滤波法进行降噪,计算图像的平均灰度和平均灰度变化率,利用沉降速率与平均灰度变化率的关系得到沉降速率。通过絮凝沉降实验提取图像的灰度、能量、对比度、方差和相关度等特征值,进行分析验证。分析结果表明:① 5种图像特征中,平均灰度的变化符合煤泥水批次沉降过程中沉降速率的变化规律,即存在缓冲区、线性区和稳定区,且变化特征可以在30 s内获得。② 平均灰度变化率与沉降速率存在较好的线性相关性,煤泥水质量浓度为20 g/L时,不同絮凝剂添加量下图像平均灰度变化率与沉降速率的线性相关系数达0.977 2;煤泥水质量浓度5~25 g/L、絮凝剂添加量为0.1~0.2 kg/t条件下,图像平均灰度变化率与沉降速率的线性相关系数为0.944 1。③ 平均灰度变化率可以在较大范围内适应煤泥水絮凝沉降状态的变化,可用于快速检测煤泥水絮凝沉降速率并作为煤泥水加药智能调节的依据。

     

  • 图  1  煤泥水絮凝沉降实验装置

    Figure  1.  Slime water flocculation and sedimentation experiment device

    图  2  煤泥水沉降过程图像

    Figure  2.  Images of slime water sedimentation process

    图  3  煤泥水沉降过程图像特征变化

    Figure  3.  Changes in image features of slime water sedimentation process

    图  4  煤泥水沉降过程图像平均灰度变化规律

    Figure  4.  The average grayscale variation law of images during slime water sedimentation process

    图  5  煤泥水沉降过程平均灰度变化率与沉降速率的相关性

    Figure  5.  The correlation between the average grayscale change rate and sedimentation rate during slime water sedimentation process

    图  6  不同条件下平均灰度变化率与沉降速率的关联性

    Figure  6.  The correlation between average grayscale change rate and sedimentation rate under different conditions

    图  7  基于图像灰度识别的煤泥水絮凝沉降速率快速检测方法

    Figure  7.  Fast detection method for slime water flocculation and sedimentation rate based on image grayscale recognition

  • [1] 党瑞德,张月飞,林喆. 哈尔乌素选煤厂煤泥水絮凝影响因素研究[J]. 煤炭工程,2021,53(增刊1):103-107.

    DANG Ruide,ZHANG Yuefei,LIN Zhe. Influencing factors of slime water flocculation in Harwusu Coal Preparation Plant[J]. Coal Engineering,2021,53(S1):103-107.
    [2] NI Chao,BU Xiangning,XIA Wencheng,et al. Observing slime-coating of fine minerals on the lump coal surface using particle vision and measurement[J]. Powder Technology,2018,339:434-439. doi: 10.1016/j.powtec.2018.08.034
    [3] 宋帅,樊玉萍,马晓敏,等. 煤泥水中煤与不同矿物相互作用的模拟研究[J]. 矿产综合利用,2020(1):168-172,102. doi: 10.3969/j.issn.1000-6532.2020.01.034

    SONG Shuai,FAN Yuping,MA Xiaomin,et al. Simulation study on interaction between coal and different minerals in coal slurry[J]. Multipurpose Utilization of Mineral Resources,2020(1):168-172,102. doi: 10.3969/j.issn.1000-6532.2020.01.034
    [4] 周青松. 浅析煤泥水处理对选煤工艺的影响[J]. 矿业装备,2022(5):18-20.

    ZHOU Qingsong. Analysis of the impact of coal slurry water treatment on coal preparation process[J]. Mining Equipment,2022(5):18-20.
    [5] 韩峰,孔令超,车立润,等. 煤泥水沉降检测控制系统的研究与应用[J]. 煤炭加工与综合利用,2023(1):77-78. doi: 10.16200/j.cnki.11-2627/td.2023.01.019

    HAN Feng,KONG Lingchao,CHE Lirun,et al. Research and application of coal slurry settlement detection and control system[J]. Coal Processing & Comprehensive Utilization,2023(1):77-78. doi: 10.16200/j.cnki.11-2627/td.2023.01.019
    [6] 毛箫瑀,刘令云. 煤泥水处理智能控制研究现状[J]. 选煤技术,2022,50(2):78-85.

    MAO Xiaoyu,LIU Lingyun. Present status of the research work on intelligent control in slime water treatment[J]. Coal Preparation Technology,2022,50(2):78-85.
    [7] 窦红庆,高晓茜,张新明. 选煤厂智能加药设计与应用[J]. 洁净煤技术,2023,29(增刊1):127-130.

    DOU Hongqing,GAO Xiaoxi,ZHANG Xinming. Design and application of intelligent dosing in coal preparation plant[J]. Clean Coal Technology,2023,29(S1):127-130.
    [8] 杨津灵,杨洁明,魏晋宏,等. 基于灰色预测−模糊控制的絮凝剂自动添加系统设计[J]. 太原理工大学学报,2012,43(5):606-609. doi: 10.3969/j.issn.1007-9432.2012.05.018

    YANG Jinling,YANG Jieming,WEI Jinhong,et al. Automatic flocculant adding system based on grey prediction fuzzy control[J]. Journal of Taiyuan University of Technology,2012,43(5):606-609. doi: 10.3969/j.issn.1007-9432.2012.05.018
    [9] 邓建军,张孝逐,林喆,等. 基于光电测量的煤泥水自动加药系统研究[J]. 洁净煤技术,2017,23(2):92-97,102. doi: 10.13226/j.issn.1006-6772.2017.02.018

    DENG Jianjun,ZHANG Xiaozhu,LIN Zhe,et al. Study on the automatic dosing system of coal slurry based on photoelectric measurement[J]. Clean Coal Technology,2017,23(2):92-97,102. doi: 10.13226/j.issn.1006-6772.2017.02.018
    [10] 张明青,刘颀,宋灿灿. 从黏土行为视角认识煤泥水沉降性能[J]. 选煤技术,2021(1):44-49. doi: 10.16447/j.cnki.cpt.2021.01.005

    ZHANG Mingqing,LIU Qi,SONG Cancan. Exploration of coal slurry sedimentation characteristics from the perspective of clay behavior[J]. Coal Preparation Technology,2021(1):44-49. doi: 10.16447/j.cnki.cpt.2021.01.005
    [11] 折小江,刘江,王兰豪. AI视频图像分析在选煤厂智能化中的应用现状与发展趋势[J]. 工矿自动化,2022,48(11):45-53,109.

    SHE Xiaojiang,LIU Jiang,WANG Lanhao. Application status and prospect of AI video image analysis in intelligent coal preparation plant[J]. Journal of Mine Automation,2022,48(11):45-53,109.
    [12] 种亚岗,石晓军,陈锋,等. 机器视觉技术在选煤厂应用的研究现状和进展[J]. 矿山机械,2017,45(7):57-59. doi: 10.16816/j.cnki.ksjx.2017.07.014

    Chong Yagang,SHI Xiaojun,CHEN Feng,et al. Research status and development of application of machine vision technology in coal washery[J]. Mining & Processing Equipment,2017,45(7):57-59. doi: 10.16816/j.cnki.ksjx.2017.07.014
    [13] 薛旭升,杨星云,齐广浩,等. 煤矿带式输送机分拣机器人异物识别与定位系统设计[J]. 工矿自动化,2022,48(12):33-41.

    XUE Xusheng,YANG Xingyun,QI Guanghao,et al. Design of foreign object recognition and positioning system for sorting robot of coal mine belt conveyor[J]. Journal of Mine Automation,2022,48(12):33-41.
    [14] 周德炀,张立忠,景治,等. 基于机器视觉的煤质快速分析法及其应用[J]. 煤炭加工与综合利用,2020(8):78-80. doi: 10.16200/j.cnki.11-2627/td.2020.08.022

    ZHOU Deyang,ZHANG Lizhong,JING Zhi,et al. The quick analysis method and its application of coal quality based on machine vision[J]. Coal Processing & Comprehensive Utilization,2020(8):78-80. doi: 10.16200/j.cnki.11-2627/td.2020.08.022
    [15] 丁泽海. 基于机器视觉的高硫煤煤质分析研究[D]. 徐州:中国矿业大学,2018.

    DING Zehai. Analysis of high sulfur coal property based on machine vision[D]. Xuzhou:China University of Mining and Technology,2018.
    [16] 赵瑞,陆博. 在线图像分析系统在浮选优化控制中的应用[J]. 中国矿业,2019,28(增刊2):214-218.

    ZHAO Rui,LU Bo. Application of on-line image analysis system in flotation optimization control[J]. China Mining Magazine,2019,28(S2):214-218.
    [17] 李强. 基于语义理解的图像检索研究[D]. 天津:天津大学,2016.

    LI Qiang. A study on image retrieval based on semantic understanding[D]. Tianjin:Tianjin University,2016.
    [18] 汪岩,李自强. 基于AI图像处理的煤矸石特征提取及分类方法[J]. 煤炭技术,2023,42(11):231-233.

    WANG Yan,LI Ziqiang. Feature extraction and classification method of coal gangue based on AI image processing[J]. Coal Technology,2023,42(11):231-233.
    [19] LIN Zhe,LI Panting,HOU Dou,et al. Aggregation mechanism of particles:effect of Ca2+ and polyacrylamide on coagulation and flocculation of coal slime water containing illite[J]. Minerals,2017,7(2). DOI: 10.3390/min7020030.
    [20] 林喆,杨超,沈正义,等. 高泥化煤泥水的性质及其沉降特性[J]. 煤炭学报,2010,35(2):312-315. doi: 10.13225/j.cnki.jccs.2010.02.008

    LIN Zhe,YANG Chao,SHEN Zhengyi,et al. The properties and sedimentation characteristics of extremely sliming coal slime water[J]. Journal of China Coal Society,2010,35(2):312-315. doi: 10.13225/j.cnki.jccs.2010.02.008
    [21] LIN Zhe,WANG Quanwu,WANG Tuqing,et al. Dynamic floc characteristics of flocculated coal slime water under different agent conditions using particle vision and measurement[J]. Water Environment Research,2020,92(5):706-712. doi: 10.1002/wer.1261
  • 加载中
图(7)
计量
  • 文章访问数:  69
  • HTML全文浏览量:  26
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-24
  • 修回日期:  2023-12-15
  • 网络出版日期:  2024-01-03

目录

    /

    返回文章
    返回