留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水力压冲一体化增透抽采瓦斯技术

王宝贵

王宝贵. 水力压冲一体化增透抽采瓦斯技术[J]. 工矿自动化,2024,50(1):35-41.  doi: 10.13272/j.issn.1671-251x.2023050014
引用本文: 王宝贵. 水力压冲一体化增透抽采瓦斯技术[J]. 工矿自动化,2024,50(1):35-41.  doi: 10.13272/j.issn.1671-251x.2023050014
WANG Baogui. Hydraulic fracturing and punching integration enhanced permeability gas extraction technology[J]. Journal of Mine Automation,2024,50(1):35-41.  doi: 10.13272/j.issn.1671-251x.2023050014
Citation: WANG Baogui. Hydraulic fracturing and punching integration enhanced permeability gas extraction technology[J]. Journal of Mine Automation,2024,50(1):35-41.  doi: 10.13272/j.issn.1671-251x.2023050014

水力压冲一体化增透抽采瓦斯技术

doi: 10.13272/j.issn.1671-251x.2023050014
基金项目: 河南省科技攻关项目(212102310599)。
详细信息
    作者简介:

    王宝贵(1987—),男,河南南阳人,工程师,硕士,主要从事煤矿瓦斯治理工作,E-mail:1031715958@qq.com

  • 中图分类号: TD712

Hydraulic fracturing and punching integration enhanced permeability gas extraction technology

  • 摘要: 现有的水力压裂、水力冲孔、水力掏槽、水力割缝等煤矿井下水力增透技术工艺复杂、适应条件单一、劳动强度大,而钻冲一体化、钻扩一体化、水力冲/压一体化等技术对硬煤增透效果不理想,且存在工序繁琐、不能连续作业等问题。针对上述问题,提出了一种水力压冲一体化增透抽采瓦斯技术,在钻进过程中利用高压水射流定点(定向、分段)对煤层实施水力增透作业,可实现集打钻、对软煤水力冲孔及对硬煤水力喷射压裂的一体化作业。揭示了水力压冲一体化增透原理,即通过水力冲孔将软煤层的部分煤体冲出,实现软煤层出煤卸压增透,对硬煤层进行定点水力喷射压裂,实现硬煤层造缝增透;研制了水力压冲一体化钻具,满足高泵压、大排量的要求,具备较强的破岩和排屑能力,其工序简单、可操控性强;给出了高压水射流冲孔和水力喷射压裂时的钻具操控方法,探讨了钻进时冲压工艺和退钻时冲压工艺。在某矿16101底抽巷使用水力压冲一体化钻具进行了现场工程试验,结果表明:在软煤段进行水力冲孔作业,比传统水力冲孔缩短时间60%~80%,而单孔出煤量增加了约2倍,单孔平均百米瓦斯抽采纯量提高了1倍;在硬煤段进行水力喷射压裂作业,单孔平均百米瓦斯抽采纯量比传统水力冲孔提高了2倍。

     

  • 图  1  水力压冲一体化钻具组成

    Figure  1.  Composition of drilling tool for hydraulic fracturing and punching integration

    图  2  水力喷射器结构

    Figure  2.  Hydraulic injector structure

    图  3  水力压冲一体化钻具操控方法

    Figure  3.  Control method of drilling tool for hydraulic fracturing and punching integration

    图  4  钻进时冲压工艺

    Figure  4.  Stamping process during drilling

    图  5  退钻时冲压工艺

    Figure  5.  Stamping process during drill withdrawal

    图  6  16101底抽巷穿层钻孔布置

    Figure  6.  Layout of 16101 bottom extraction roadway through layer drilling

    图  7  4组钻孔百米瓦斯抽采纯量对比

    Figure  7.  Comparison of pure volume of 100 m gas extraction in four groups of boreholes

    表  1  钻孔设计参数

    Table  1.   Borehole design parameters

    孔号倾角 /(°)方位孔径/mm岩段/m煤段/m总长/m
    348.0下帮9413.68.121.8
    583.5下帮9410.56.517.0
    857.5上帮9413.28.121.3
    下载: 导出CSV
  • [1] 陶云奇,张超林,许江,等. 水力冲孔卸压增透物理模拟试验及效果评价[J]. 重庆大学学报,2018,41(10):69-77. doi: 10.11835/j.issn.1000-582X.2018.10.008

    TAO Yunqi,ZHANG Chaolin,XU Jiang,et al. Effect evaluation on pressure relief and permeability improvement of hydraulic flushing physical experiment[J]. Journal of Chongqing University,2018,41(10):69-77. doi: 10.11835/j.issn.1000-582X.2018.10.008
    [2] 李国富,李超,霍春秀,等. 山西重点煤矿区瓦斯梯级利用关键技术与工程示范[J]. 煤田地质与勘探,2022,50(9):42-50. doi: 10.12363/issn.1001-1986.22.07.0558

    LI Guofu,LI Chao,HUO Chunxiu,et al. Key technology and engineering demonstration for cascade utilization of gas in key coal mining areas of Shanxi Province,China[J]. Coal Geology & Exploration,2022,50(9):42-50. doi: 10.12363/issn.1001-1986.22.07.0558
    [3] 郭超奇,赵继展,李小建,等. 中硬低渗煤层定向长钻孔水力压裂瓦斯高效抽采技术与应用[J]. 煤田地质与勘探,2020,48(6):103-108,115. doi: 10.3969/j.issn.1001-1986.2020.06.014

    GUO Chaoqi,ZHAO Jizhan,LI Xiaojian,et al. Technology and application of high efficiency gas extraction by directional long borehole hydraulic fracturing in coal seams of medium hardness and low permeability[J]. Coal Geology & Exploration,2020,48(6):103-108,115. doi: 10.3969/j.issn.1001-1986.2020.06.014
    [4] 张帅,刘志伟,韩承强,等. 高突低渗透煤层超高压水力割缝卸压增透研究[J]. 煤炭科学技术,2019,47(4):147-151.

    ZHANG Shuai,LIU Zhiwei,HAN Chengqiang,et al. Study on coal pressure relief and permeability increase through ultra-high pressure hydraulic slotting in high outburst and low permeability coal seam[J]. Coal Science and Technology,2019,47(4):147-151.
    [5] 刘见中,孙海涛,雷毅,等. 煤矿区煤层气开发利用新技术现状及发展趋势[J]. 煤炭学报,2020,45(1):258-267.

    LIU Jianzhong,SUN Haitao,LEI Yi,et al. Current situation and development trend of coalbed methane development and utilization technology in coal mine area[J]. Journal of China Coal Society,2020,45(1):258-267.
    [6] 陈洪涛,李太训. 薛湖煤矿超高压水力割缝工艺参数优化试验[J]. 工矿自动化,2020,46(1):90-94.

    CHEN Hongtao,LI Taixun. Optimization test of ultra-high pressure hydraulic slotting process parameters in Xuehu Coal Mine[J]. Industry and Mine Automation,2020,46(1):90-94.
    [7] 姜婷婷,张建华,黄刚. 煤岩水力压裂裂缝扩展形态试验研究[J]. 岩土力学,2018,39(10):3677-3684.

    JIANG Tingting,ZHANG Jianhua,HUANG Gang. Experimental study of fracture geometry during hydraulic fracturing in coal[J]. Rock and Soil Mechanics,2018,39(10):3677-3684.
    [8] 董志勇. 煤矿井下水力压裂切顶卸压护巷技术应用研究[J]. 工矿自动化,2019,45(10):99-103.

    DONG Zhiyong. Application research on roadway protection technology by hydraulic fracturing roof cutting pressure relief in underground coal mine[J]. Industry and Mine Automation,2019,45(10):99-103.
    [9] 张福旺,秦汝祥,杨应迪. 密集水力冲孔增透抽采瓦斯试验研究[J]. 煤炭科学技术,2022,50(4):142-148.

    ZHANG Fuwang,QIN Ruxiang,YANG Yingdi. Experimental study on gas extraction with intensive hydraulic punching and penetration enhancement[J]. Coal Science and Technology,2022,50(4):142-148.
    [10] 王恩元,汪皓,刘晓斐,等. 水力冲孔孔洞周围煤体地应力和瓦斯时空演化规律[J]. 煤炭科学技术,2020,48(1):39-45.

    WANG Enyuan,WANG Hao,LIU Xiaofei,et al. Spatio temporal evolution of geostress and gas field around hydraulic punching borehole in coal seam[J]. Coal Science and Technology,2020,48(1):39-45.
    [11] 刘东,刘文. 水力冲孔压裂卸压增透抽采瓦斯技术研究[J]. 煤炭科学技术,2019,47(3):136-141.

    LIU Dong,LIU Wen. Research on gas extraction technology:hydraulic stamping and hydrofracture to pressure relief and permeability improvement[J]. Coal Science and Technology,2019,47(3):136-141.
    [12] GU Beifang,HU Ruili,WANG Longkang,et al. Study on the influence rule of high-pressure water jet nozzle parameters on the effect of hydraulic slotting[J]. Geofluids,2022(8):1-10.
    [13] 杜金磊,张民波,张电吉,等. 低透气突出煤层水力割缝协同卸压增透技术[J]. 工矿自动化,2021,47(7):98-105.

    DU Jinlei,ZHANG Minbo,ZHANG Dianji,et al. Hydraulic cutting cooperative pressure relief and permeability enhancement technology in low permeability outburst coal seam[J]. Industry and Mine Automation,2021,47(7):98-105.
    [14] 王正帅. 碎软煤层顺层钻孔水力割缝增透技术研究[J]. 煤炭科学技术,2019,47(8):147-151.

    WANG Zhengshuai. Research on hydraulic slitting anti-reflection technology for borehole drilled along broken soft coal seam[J]. Coal Science and Technology,2019,47(8):147-151.
    [15] 梁银权,王进尚,冯星宇. 高瓦斯低透气性煤层深钻孔高压水力割缝增透技术[J]. 煤炭工程,2019,51(6):99-102.

    LIANG Yinquan,WANG Jinshang,FENG Xingyu. Permeability-increasing technology of deep drilling supper-high pressure hydraulic cutting in high gas and low permeability coal seam[J]. Coal Engineering,2019,51(6):99-102.
    [16] 卢义玉,李瑞,鲜学福,等. 地面定向井+水力割缝卸压方法高效开发深部煤层气探讨[J]. 煤炭学报,2021,46(3):876-884.

    LU Yiyu,LI Rui,XIAN Xuefu,et al. Discussion on the efficient exploitation method of deep coalbed methane with pressure relief by ground directional well+hydraulic slotting[J]. Journal of China Coal Society,2021,46(3):876-884.
    [17] 王正帅. 水力化增透技术在碎软煤层瓦斯抽采中的应用研究[J]. 煤炭工程,2021,53(2):85-89.

    WANG Zhengshuai. Application of hydraulic permeability-enhancing in gas extraction of broken soft coal seam in Xinjiang[J]. Coal Engineering,2021,53(2):85-89.
    [18] 司俊廷. 冲压一体化联合增透技术在软煤层瓦斯治理中的应用研究[J]. 中国矿业,2020,29(增刊2):348-352. doi: 10.12075/j.issn.1004-4051.2020.S2.017

    SI Junting. Research on the application of stamping integration combined anti-reflection technology in gas treatment of soft coal seam[J]. China Mining Magazine,2020,29(S2):348-352. doi: 10.12075/j.issn.1004-4051.2020.S2.017
    [19] 苏现波,宋金星,郭红玉,等. 煤矿瓦斯抽采增产机制及关键技术[J]. 煤炭科学技术,2020,48(12):1-30.

    SU Xianbo,SONG Jinxing,GUO Hongyu,et al. Increasing production mechanism and key technology of gas extraction in coal mines[J]. Coal Science and Technology,2020,48(12):1-30.
    [20] 于世耀. 钻冲压一体化瓦斯抽采增产技术及应用研究[D]. 焦作:河南理工大学,2020.

    YU Shiyao. Study on the stimulation technology and application of gas drainage by hydraulic drilling flushing and fracturing integration[D]. Jiaozuo:Henan Polytechnic University,2020.
    [21] SONG Jinxing,ZHANG Huiyan,YU Shiyao,et al. Application of integrated drilling and stamping technology in gas extraction through layer drilling[J]. Energy Exploration & Exploitation,2022,40(4):1113-1130.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  87
  • HTML全文浏览量:  26
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-06
  • 修回日期:  2024-01-20
  • 网络出版日期:  2024-01-31

目录

    /

    返回文章
    返回