留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含夹矸煤层水力割缝瓦斯抽采技术研究及应用

李晓绅 刘瑞鹏

李晓绅,刘瑞鹏. 含夹矸煤层水力割缝瓦斯抽采技术研究及应用[J]. 工矿自动化,2023,49(4):134-140.  doi: 10.13272/j.issn.1671-251x.2022100095
引用本文: 李晓绅,刘瑞鹏. 含夹矸煤层水力割缝瓦斯抽采技术研究及应用[J]. 工矿自动化,2023,49(4):134-140.  doi: 10.13272/j.issn.1671-251x.2022100095
LI Xiaoshen, LIU Ruipeng. Research and application of hydraulic slotting gas extraction technology in coal seams containing gangue[J]. Journal of Mine Automation,2023,49(4):134-140.  doi: 10.13272/j.issn.1671-251x.2022100095
Citation: LI Xiaoshen, LIU Ruipeng. Research and application of hydraulic slotting gas extraction technology in coal seams containing gangue[J]. Journal of Mine Automation,2023,49(4):134-140.  doi: 10.13272/j.issn.1671-251x.2022100095

含夹矸煤层水力割缝瓦斯抽采技术研究及应用

doi: 10.13272/j.issn.1671-251x.2022100095
基金项目: 国家自然科学基金资助项目(52074296,52004286)。
详细信息
    作者简介:

    李晓绅(1987—),男,河北邢台人,工程师,硕士,现从事矿井通风与瓦斯治理方面的工作,E-mail:715669897@qq.com

  • 中图分类号: TD72

Research and application of hydraulic slotting gas extraction technology in coal seams containing gangue

  • 摘要: 为研究水力割缝强化瓦斯抽采技术在含夹矸煤层中的应用,通过理论分析得出,与普通钻孔相比,水力割缝钻孔可通过增加煤层渗透率、煤体暴露面积、瓦斯流动通道3个方面强化瓦斯抽采,并建立了考虑孔隙率和渗透率变化的煤层瓦斯流动控制方程。以东庞矿21218工作面为工程背景,采用COMSOL数值模拟软件建立了含夹矸煤层水力割缝瓦斯抽采数值模型,通过对煤层瓦斯流动控制方程进行解算,研究了不同割缝高度、不同钻孔间距条件下,水力割缝瓦斯抽采钻孔的瓦斯压力分布规律,从而确定了上煤层割缝0.3 m、下煤层割缝0.1 m、钻孔间距7.5 m的水力割缝瓦斯抽采钻孔施工参数。基于上述参数,在东庞矿21218工作面现场施工28组、每组7个水力割缝钻孔,对含夹矸煤层瓦斯进行抽采作业,结果表明:与普通钻孔相比,水力割缝钻孔的每百米巷道施工工程量减少了28.51%,瓦斯抽采纯量由11.53 万m3提升至21.43 万m3,增幅为85.86%,巷道掘进期间掘进工作面平均瓦斯体积分数由0.06%降至0.01%,瓦斯抽采效果好,且有效提高了瓦斯抽采效率。

     

  • 图  1  东庞矿21218工作面布置

    Figure  1.  Layout of 21218 working face in Dongpang Mine

    图  2  东庞矿21218工作面岩层柱状

    Figure  2.  Rock stratum histogram of 21218 working face in Dongpang Mine

    图  3  不同抽采钻孔瓦斯流动模型

    Figure  3.  Gas flow model of different extraction boreholes

    图  4  含夹矸煤层水力割缝瓦斯抽采数值模型

    Figure  4.  Numerical model for hydraulic slotting gas extraction in coal seams containing gangue

    图  5  瓦斯压力分布

    Figure  5.  Gas pressure distribution

    图  6  单孔水力割缝钻孔不同割缝高度下瓦斯压力分布剖面

    Figure  6.  Section of gas pressure distribution at different slotting heights in single-hole hydraulic slotting boreholes

    图  7  多钻孔瓦斯抽采数值模型

    Figure  7.  Numerical model of porous drillings gas extraction

    图  8  不同钻孔间距下瓦斯压力分布

    Figure  8.  Gas pressure distribution at different borehole spacing

    图  9  测线监测的瓦斯压力数据

    Figure  9.  Gas pressure monitoring data of survey line

    图  10  水力割缝钻孔布置剖面

    Figure  10.  Hydraulic slotting boreholes layout section

    图  11  普通钻孔布置剖面

    Figure  11.  Ordinary boreholes layout section

    表  1  数值模型计算参数

    Table  1.   Calculation parameters of the numerical model

    参数数值参数数值
    初始地应力/MPa15.50初始瓦斯压力/MPa1.15
    夹矸弹性模量/GPa3.45吸附常数a/(m3·kg−124
    夹矸泊松比0.29吸附常数b/MPa−11
    夹矸黏聚力/MPa4.63煤的灰分/%4.38
    夹矸内摩擦角/(°)27煤的水分/%1.85
    夹矸密度/(kg·m−32 530瓦斯分子量/(g·mol−116
    煤层弹性模量/GPa2.35气体常数/(J·mol−1·K−1)8.314
    煤层泊松比0.25煤层温度/K293
    煤层黏聚力/MPa2.97初始渗透率/m21.14×10−8
    煤层内摩擦角/(°)28瓦斯动力黏度/(Pa·s)1.84×10−5
    煤层密度/(kg·m−31 430初始孔隙率0.06
    下载: 导出CSV

    表  2  普通钻孔和水力割缝钻孔瓦斯抽采效果对比

    Table  2.   Comparison of gas extraction effects between ordinary boreholes and hydraulic slotting boreholes

    指标普通钻孔水力割缝钻孔
    覆盖巷道长度/m206202
    工程量/m10 2997 220
    抽采纯量/万m311.5321.43
    掘进工作面平均瓦斯体积分数/%0.060.01
    下载: 导出CSV
  • [1] 胡千庭,周世宁,周心权. 煤与瓦斯突出过程的力学作用机理[J]. 煤炭学报,2008,33(12):1368-1372. doi: 10.3321/j.issn:0253-9993.2008.12.008

    HU Qianting,ZHOU Shining,ZHOU Xinquan. Mechanical mechanism of coal and gas outburst process[J]. Journal of China Coal Society,2008,33(12):1368-1372. doi: 10.3321/j.issn:0253-9993.2008.12.008
    [2] 张保法,刘中一. “三软”高突煤层水力冲孔工艺优化[J]. 煤矿安全,2013,44(7):141-143. doi: 10.13347/j.cnki.mkaq.2013.07.074

    ZHANG Baofa,LIU Zhongyi. Hydraulic punching technology optimization in "three-soft" severe outburst coal seam[J]. Safety in Coal Mines,2013,44(7):141-143. doi: 10.13347/j.cnki.mkaq.2013.07.074
    [3] 周福宝,孙玉宁,李海鉴,等. 煤层瓦斯抽采钻孔密封理论模型与工程技术研究[J]. 中国矿业大学学报,2016,45(3):433-439. doi: 10.13247/j.cnki.jcumt.000498

    ZHOU Fubao,SUN Yuning,LI Haijian,et al. Research on the theoretical model and engineering technology of the coal seam gas drainage hole sealing[J]. Journal of China University of Mining & Technology,2016,45(3):433-439. doi: 10.13247/j.cnki.jcumt.000498
    [4] 韩颖,宋德尚. 低渗煤层高压水射流割缝增透技术试验研究[J]. 中国安全生产科学技术,2014,10(12):35-39.

    HAN Ying,SONG Deshang. Experimental study on permeability improvement technology by cutting seam using high pressure water jet in coal seam with low permeability[J]. Journal of Safety Science and Technology,2014,10(12):35-39.
    [5] 王登科,彭明,付启超,等. 瓦斯抽采过程中的煤层透气性动态演化规律与数值模拟[J]. 岩石力学与工程学报,2016,35(4):704-712. doi: 10.13722/j.cnki.jrme.2015.0931

    WANG Dengke,PENG Ming,FU Qichao,et al. Evolution and numerical simulation of coal permeability during gas drainage in coal seams[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(4):704-712. doi: 10.13722/j.cnki.jrme.2015.0931
    [6] 秦江涛,陈玉涛. 高压水力割缝和压裂联合增透技术及应用[J]. 矿业安全与环保,2016,43(6):29-31,36. doi: 10.3969/j.issn.1008-4495.2016.06.008

    QIN Jiangtao,CHEN Yutao. Combined permeability improvement technology of high-pressure hydraulic slotting with hydraulic fracturing and its application[J]. Mining Safety & Environmental Protection,2016,43(6):29-31,36. doi: 10.3969/j.issn.1008-4495.2016.06.008
    [7] 吴教锟. 水力割缝增透技术在石门揭煤中的应用[J]. 煤矿开采,2017,22(2):93-95. doi: 10.13532/j.cnki.cn11-3677/td.2017.02.023

    WU Jiaokun. Application of hydraulic slotting and permeability technology in uncovering coal in crosscut[J]. Coal Mining Technology,2017,22(2):93-95. doi: 10.13532/j.cnki.cn11-3677/td.2017.02.023
    [8] 贾同千,饶孜,何庆兵,等. 复杂地质低渗煤层水力压裂−割缝综合瓦斯增透技术研究[J]. 中国安全生产科学技术,2017,13(4):59-64.

    JIA Tongqian,RAO Zi,HE Qingbing,et al. Research on comprehensive gas permeability improvement technology by hydraulic fracturing and slotting in coal seam with complex geological conditions and low permeability[J]. Journal of Safety Science and Technology,2017,13(4):59-64.
    [9] 刘志伟,高振勇. 超高压水力钻割一体化增透技术参数试验考察[J]. 煤矿开采,2019,24(1):133-135. doi: 10.13532/j.cnki.cn11-3677/td.2019.01.029

    LIU Zhiwei,GAO Zhenyong. Parameters experiment of integrated anti-reflection technology of super high pressure hydraulic cutting[J]. Coal Mining Technology,2019,24(1):133-135. doi: 10.13532/j.cnki.cn11-3677/td.2019.01.029
    [10] 张帅,刘志伟,韩承强,等. 高突低渗透煤层超高压水力割缝卸压增透研究[J]. 煤炭科学技术,2019,47(4):147-151. doi: 10.13199/j.cnki.cst.2019.04.024

    ZHANG Shuai,LIU Zhiwei,HAN Chengqiang,et al. Study on coal pressure relief and permeability increase through ultra-high pressure hydraulic slotting in high outburst and low permeability coal seam[J]. Coal Science and Technology,2019,47(4):147-151. doi: 10.13199/j.cnki.cst.2019.04.024
    [11] 孙振敏. 穿层割缝钻孔对煤体卸压增透效应的研究与应用[J]. 矿业安全与环保,2019,46(5):75-79,84. doi: 10.3969/j.issn.1008-4495.2019.05.016

    SUN Zhenmin. Research and application of pressure relived and permeability enhanced effect of perforated slotting borehole on coal[J]. Mining Safety & Environmental Protection,2019,46(5):75-79,84. doi: 10.3969/j.issn.1008-4495.2019.05.016
    [12] 陈洪涛,李太训. 薛湖煤矿超高压水力割缝工艺参数优化试验[J]. 工矿自动化,2020,46(1):90-94. doi: 10.13272/j.issn.1671-251x.2019060067

    CHEN Hongtao,LI Taixun. Optimization test of ultra-high pressure hydraulic slotting process parameters in Xuehu Coal Mine[J]. Industry and Mine Automation,2020,46(1):90-94. doi: 10.13272/j.issn.1671-251x.2019060067
    [13] 陈树亮,黄炳香,李丁,等. 煤岩体高压磨料水力割缝基本规律的试验研究[J]. 采矿与岩层控制工程学报,2020,2(4):90-96.

    CHEN Shuliang,HUANG Bingxiang,LI Ding,et al. Experiment study on the basic law of high pressure abrasive hydraulic cutting for coal-rock mass[J]. Journal of Mining and Strata Control Engineering,2020,2(4):90-96.
    [14] 李生舟,乔伟,王建. 深部突出煤层超高压水射流割缝工艺参数研究与应用[J]. 矿业安全与环保,2020,47(4):57-61. doi: 10.19835/j.issn.1008-4495.2020.04.011

    LI Shengzhou,QIAO Wei,WANG Jian. Research and application of technological parameters of ultra-high pressure water jet slotting in deep outburst coal seam[J]. Mining Safety & Environmental Protection,2020,47(4):57-61. doi: 10.19835/j.issn.1008-4495.2020.04.011
    [15] 陆占金,李生舟. 赵固二矿坚硬煤层超高压水力割缝增透技术应用[J]. 煤炭工程,2021,53(4):76-80.

    LU Zhanjin,LI Shengzhou. Application of super-high pressure hydraulic slotting for permeability enhancing in hard coal seam of Zhaogu No.2 Mine[J]. Coal Engineering,2021,53(4):76-80.
    [16] 倪兴. 叠加效应下多孔水力割缝联合抽采参数优化研究[J]. 工矿自动化,2023,49(1):146-152. doi: 10.13272/j.issn.1671-251x.2022060110

    NI Xing. Optimization of multi-hole hydraulic cutting combined extraction parameters under superposition effect[J]. Journal of Mine Automation,2023,49(1):146-152. doi: 10.13272/j.issn.1671-251x.2022060110
    [17] 鲁义,申宏敏,秦波涛,等. 顺层钻孔瓦斯抽采半径及布孔间距研究[J]. 采矿与安全工程学报,2015,32(1):156-162. doi: 10.13545/j.cnki.jmse.2015.01.025

    LU Yi,SHEN Hongmin,QIN Botao,et al. Gas drainage radius and borehole distance along seam[J]. Journal of Mining & Safety Engineering,2015,32(1):156-162. doi: 10.13545/j.cnki.jmse.2015.01.025
    [18] 崔宝库,张根. 不同布置方式下穿层钻孔瓦斯抽采数值模拟研究[J]. 能源与环保,2020,42(8):45-49.

    CUI Baoku,ZHANG Gen. Numerical simulation research on gas drainage used by layer-through holes with different layouts[J]. China Energy and Environmental Protection,2020,42(8):45-49.
    [19] 葛兆龙,梅绪东,贾亚杰,等. 高压水射流割缝钻孔抽采影响半径研究[J]. 采矿与安全工程学报,2014,31(4):657-664. doi: 10.13545/j.issn1673-3363.2014.04.027

    GE Zhaolong,MEI Xudong,JIA Yajie,et al. Influence radius of slotted borehole drainage by high pressure water jet[J]. Journal of Mining & Safety Engineering,2014,31(4):657-664. doi: 10.13545/j.issn1673-3363.2014.04.027
    [20] 郝富昌,孙丽娟,刘明举. 考虑卸压和抽采效果的水力冲孔布孔参数优化研究[J]. 采矿与安全工程学报,2014,31(5):756-763. doi: 10.13545/j.issn1673-3363.2014.05.015

    HAO Fuchang,SUN Lijuan,LIU Mingju. Research on boreholes space optimization of hydraulic flushing considering press relief and gas drainage effect[J]. Journal of Mining & Safety Engineering,2014,31(5):756-763. doi: 10.13545/j.issn1673-3363.2014.05.015
    [21] 卢平,沈兆武,朱贵旺,等. 岩样应力应变全程中的渗透性表征与试验研究[J]. 中国科学技术大学学报,2002,32(6):678-684. doi: 10.3969/j.issn.0253-2778.2002.06.008

    LU Ping,SHEN Zhaowu,ZHU Guiwang,et al. Characterization and experimental study on the permeability of rock-samples during complete stress-strain course[J]. Journal of University of Science and Technology of China,2002,32(6):678-684. doi: 10.3969/j.issn.0253-2778.2002.06.008
    [22] 张雷,周宏伟,王向宇,等. 考虑时效影响的深部煤层瓦斯运移特性[J]. 煤炭学报,2019,44(6):1771-1779. doi: 10.13225/j.cnki.jccs.2018.0820

    ZHANG Lei,ZHOU Hongwei,WANG Xiangyu,et al. Characteristics of deep coalbed gas migration based on the time-dependent effect[J]. Journal of China Coal Society,2019,44(6):1771-1779. doi: 10.13225/j.cnki.jccs.2018.0820
    [23] XIE Shengrong, CUI Junqi, CHEN Dongdong, et al. Numerical simulation study on gas drainage by interval hydraulic flushing in coal seam working face[J]. Energy Exploration & Exploitation, 2021, 39(4): 1123-1142.
    [24] 褚廷湘,李品,晁江坤,等. 承压破碎煤体碎胀系数演变特征与机制[J]. 煤炭学报,2017,42(12):3182-3188.

    CHU Tingxiang,LI Pin,CHAO Jiangkun,et al. Bulking coefficient evolution characteristics and mechanism of compacted broken coal[J]. Journal of China Coal Society,2017,42(12):3182-3188.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  40
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-31
  • 修回日期:  2023-04-18
  • 网络出版日期:  2023-04-27

目录

    /

    返回文章
    返回