留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采空区垮落煤岩渗透特性研究

杨晓晨 贾男 张晓明 佐佐木久郎

杨晓晨,贾男,张晓明,等. 采空区垮落煤岩渗透特性研究[J]. 工矿自动化,2023,49(2):134-140.  doi: 10.13272/j.issn.1671-251x.2022090015
引用本文: 杨晓晨,贾男,张晓明,等. 采空区垮落煤岩渗透特性研究[J]. 工矿自动化,2023,49(2):134-140.  doi: 10.13272/j.issn.1671-251x.2022090015
YANG Xiaochen, JIA Nan, ZHANG Xiaoming, et al. Study on permeability characteristics of caved coal and rock in goaf[J]. Journal of Mine Automation,2023,49(2):134-140.  doi: 10.13272/j.issn.1671-251x.2022090015
Citation: YANG Xiaochen, JIA Nan, ZHANG Xiaoming, et al. Study on permeability characteristics of caved coal and rock in goaf[J]. Journal of Mine Automation,2023,49(2):134-140.  doi: 10.13272/j.issn.1671-251x.2022090015

采空区垮落煤岩渗透特性研究

doi: 10.13272/j.issn.1671-251x.2022090015
基金项目: 辽宁省科技人才与自然科学基金资助项目(2020-BS-232);辽宁省教育厅基本科研资助项目(LJKQZ2021132)。
详细信息
    作者简介:

    杨晓晨(1988—),男,辽宁丹东人,讲师,博士,主要研究方向为岩体动力灾害防治,E-mail:xiaochen2024@163.com

  • 中图分类号: TD72

Study on permeability characteristics of caved coal and rock in goaf

  • 摘要: 地震法常用于分析采空区垮落煤岩孔隙率和渗透率的相关性,现有研究大多采用有效介质理论,将采空区垮落煤岩的各向异性和不均匀性转换为等效的介质参数,对粒径、孔隙率、空间特征等因素对地震波的影响考虑较少。以采空区垮落煤岩为研究对象,根据实际采空区垮落煤岩颗粒级配和孔隙率,制备了破碎煤岩样品,通过实验验证了其孔隙率和波长−粒径比与实际采空区垮落煤岩一致。在此基础上,通过实验分析了煤岩粒径、孔隙率、地震波频率等因素对波速、振幅衰减系数及渗透率的影响,结果表明:破碎煤岩中P波速度随孔隙率增大而减小,随粒径增大而增大,受地震波频率影响较小;振幅衰减系数随孔隙率增大而增大,随粒径增大而减小,孔隙率较大时更易受地震波频率影响;破碎煤岩的渗透率随孔隙率和粒径增大而增大,遵循Kozney-Carman方程,基于实验结果建立了采空区垮落煤岩渗透率预测公式,计算得现场采空区垮落煤岩渗透率为1 225×10−12~178 930×10−12 m2;为消除粒径对地震波振幅衰减系数和煤岩样品渗透率的影响,提出单位波长振幅衰减系数(振幅衰减因子),并通过最小二乘法拟合得到振幅衰减因子与渗透率之间的经验关系式,为初步判断采空区垮落煤岩的渗透率提供了思路。

     

  • 图  1  破碎煤岩样品制作过程

    Figure  1.  Manufacturing process of broken coal and rock samples

    图  2  赵固一矿8101工作面液压支架后方垮落煤岩图像

    Figure  2.  Caved coal and rock images behind hydraulic support in 8101 working face of Zhaogu No.1 Coal Mine

    图  3  砂岩样品粒径级配曲线

    Figure  3.  Gradation curves of sandstone sample particles

    图  4  煤岩样品波速与孔隙率关系

    Figure  4.  Relationship between wave velocity and porosity of coal and rock samples

    图  5  煤岩样品振幅衰减系数与孔隙率关系

    Figure  5.  Relationship between amplitude attenuation coefficient and porosity of coal and sample samples

    图  6  煤岩样品渗透率与孔隙率关系

    Figure  6.  Relationship between permeability and porosity of coal and rock samples

    图  7  煤岩样品渗透率与孔隙特征系数关系

    Figure  7.  Relationship between permeability and pore characteristic coefficient of coal and rock samples

    图  8  煤岩样品振幅衰减因子与渗透率关系

    Figure  8.  Relationship between amplitude attenuation and permeability factor of coal and rock samples

    表  1  煤样组分分析结果

    Table  1.   Composition analysis results of coal samples %

    煤样水分固定碳灰分挥发分
    褐煤8.233.719.336.82.0
    烟煤4.554.717.420.62.8
    下载: 导出CSV

    表  2  砂岩样品化学成分分析结果

    Table  2.   Chemical composition analysis results of sandstone sample %

    SiO2AlO3Fe2O3FeOMgO
    93.133.860.110.540.25
    下载: 导出CSV

    表  3  煤岩样品力学参数

    Table  3.   Mechanical parameters of coal and rock samples

    样品弹性模
    量/GPa
    体积模
    量/GPa
    泊松
    剪切模
    量/GPa
    密度/
    (kg·m−3
    P 波速度/
    (m·s−1
    S 波速度/
    (m·s−1
    砂岩8.106.550.224.702 5512 3501157
    烟煤1.701.670.330.631 8452 150638
    褐煤1.531.200.340.561 6902 102629
    下载: 导出CSV
  • [1] Review of world energy 2021[EB/OL]. [2022-08-12]. https://www.bp.com.cn/zh_cn/china/home/news/reports/statistical-review-2021.html.
    [2] 彭苏萍. 我国煤矿安全高效开采地质保障系统研究现状及展望[J]. 煤炭学报,2020,45(7):2331-2345.

    PENG Suping. Current status and prospects of research on geological assurance system for coal mine safe and high efficient mining[J]. Journal of China Coal Society,2020,45(7):2331-2345.
    [3] 袁亮,郭华,李平,等. 大直径地面钻井采空区采动区瓦斯抽采理论与技术[J]. 煤炭学报,2013,38(1):1-8. doi: 10.13225/j.cnki.jccs.2013.01.015

    YUAN Liang,GUO Hua,LI Ping,et al. Theory and technology of goaf gas drainage with large-diameter surface boreholes[J]. Journal of China Coal Society,2013,38(1):1-8. doi: 10.13225/j.cnki.jccs.2013.01.015
    [4] 徐宇,李孜军,翟小伟,等. 开采过程中采空区煤自燃与瓦斯复合致灾隐患区域研究[J]. 煤炭学报,2019,44(增刊2):585-592. doi: 10.13225/j.cnki.jccs.2019.0596

    XU Yu,LI Zijun,ZHAI Xiaowei,et al. Potential coupled harzard zone of coal spontaneous combustion and gas in goaf under mining condition[J]. Journal of China Coal Society,2019,44(S2):585-592. doi: 10.13225/j.cnki.jccs.2019.0596
    [5] 李超峰. 煤层顶板含水层涌水危险性评价方法[J]. 煤炭学报,2020,45(增刊1):384-392. doi: 10.13225/j.cnki.jccs.2019.1634

    LI Chaofeng. Method for evaluating the possibility of water inrush from coal seam roof aquifer[J]. Journal of China Coal Society,2020,45(S1):384-392. doi: 10.13225/j.cnki.jccs.2019.1634
    [6] 黄平路,陈从新,肖国峰,等. 复杂地质条件下矿山地下开采地表变形规律的研究[J]. 岩土力学,2009,30(10):3020-3024. doi: 10.3969/j.issn.1000-7598.2009.10.023

    HUANG Pinglu,CHEN Congxin,XIAO Guofeng,et al. Study of rock movement caused by underground mining in mines with complicated geological conditions[J]. Rock and Soil Mechanics,2009,30(10):3020-3024. doi: 10.3969/j.issn.1000-7598.2009.10.023
    [7] 王玉涛. 采空区多孔介质空隙率与渗透特性三维空间动态分布模型[J]. 中国安全生产科学技术,2020,16(10):40-46.

    WANG Yutao. Three-dimensional spatial dynamic distribution model on porosity and permeability characteristics of porous media in goaf[J]. Journal of Safety Science and Technology,2020,16(10):40-46.
    [8] 梁运涛,张腾飞,王树刚,等. 采空区孔隙率非均质模型及其流场分布模拟[J]. 煤炭学报,2009,34(9):1203-1207. doi: 10.3321/j.issn:0253-9993.2009.09.011

    LIANG Yuntao,ZHANG Tengfei,WANG Shugang,et al. Heterogeneous model of porosity in gobs and its airflow field distribution[J]. Journal of China Coal Society,2009,34(9):1203-1207. doi: 10.3321/j.issn:0253-9993.2009.09.011
    [9] 褚廷湘,姜德义,余明高. 承压颗粒煤逐级加载下渗透特性实验研究[J]. 中国矿业大学学报,2017,46(5):1058-1065.

    CHU Tingxiang,JIANG Deyi,YU Minggao. Experimental study of the seepage properties of the compacted particle coal under gradual loading[J]. Journal of China University of Mining & Technology,2017,46(5):1058-1065.
    [10] KARACAN C Ö,ESTERHUIZEN G S,SCHATZEL S J,et al. Reservoir simulation-based modeling for characterizing longwall methane emissions and gob gas venthole production[J]. International Journal of Coal Geology,2007,71(2/3):225-245. doi: 10.1016/j.coal.2006.08.003
    [11] 王伟,高星,李松营,等. 槽波层析成像方法在煤田勘探中的应用——以河南义马矿区为例[J]. 地球物理学报,2012,55(3):1054-1062. doi: 10.6038/j.issn.0001-5733.2012.03.036

    WANG Wei,GAO Xing,LI Songying,et al. Channel wave tomography method and its application in coal mine exploration:An example from Henan Yima Mining Area[J]. Chinese Journal of Geophysics,2012,55(3):1054-1062. doi: 10.6038/j.issn.0001-5733.2012.03.036
    [12] HANSON D R,VANDERGRIFT T L,DEMARCO M J,et al. Advanced techniques in site characterization and mining hazard detection for the underground coal industry[J]. International Journal of Coal Geology,2002(50):275-301.
    [13] 薛国强,潘冬明,于景邨. 煤矿采空区地球物理探测应用综述[J]. 地球物理学进展,2018,33(5):2187-2192. doi: 10.6038/pg2018BB0294

    XUE Guoqiang,PAN Dongming,YU Jingcun. Review the applications of geophysical methods for mapping coal-mine voids[J]. Progress in Geophysics,2018,33(5):2187-2192. doi: 10.6038/pg2018BB0294
    [14] 蒋法文,黄晖,张振生,等. 高精度三维地震勘探技术在煤田安全生产中的应用[J]. 中国煤炭地质,2014,26(2):60-64. doi: 10.3969/j.issn.1674-1803.2014.02.13

    JIANG Fawen,HUANG Hui,ZHANG Zhensheng,et al. Application of high precision 3D seismic prospecting technology in coalfield safety production[J]. Coal Geology of China,2014,26(2):60-64. doi: 10.3969/j.issn.1674-1803.2014.02.13
    [15] 李亚林,贺振华,黄德济,等. 岩石孔渗特性与地震波衰减、传播速度的相互关系[J]. 天然气工业,2001,21(4):7-12. doi: 10.3321/j.issn:1000-0976.2001.04.002

    LI Yalin,HE Zhenhua,HUANG Deji,et al. Relation between rock porosity-permeability property and seismic wave attenuation and propagation velocity[J]. Natural Gas Industry,2001,21(4):7-12. doi: 10.3321/j.issn:1000-0976.2001.04.002
    [16] 张春,题正义,李宗翔. 采空区孔隙率的空间立体分析研究[J]. 长江科学院院报,2012,29(6):52-57. doi: 10.3969/j.issn.1001-5485.2012.06.012

    ZHANG Chun,TI Zhengyi,LI Zongxiang. Porosity of goaf in three dimensions[J]. Journal of Yangtze River Scientific Research Institute,2012,29(6):52-57. doi: 10.3969/j.issn.1001-5485.2012.06.012
    [17] FUMAGALLI E. Tests on cohesionless materials for rockfill dams[J]. ASCE Soil Mechanics and Foundation Division Journal,1969,95(1):313-330. doi: 10.1061/JSFEAQ.0001223
    [18] PAPPAS D M, MARK C. Behavior of simulated longwall gob material[R]. Washington: United States Department of the Interior, 1993.
    [19] WANG Gang,XU Hao,WU Mengmeng,et al. Porosity model and air leakage flow field simulation of goaf based on DEM-CFD[J]. Arabian Journal of Geosciences,2018,11(7):1-17.
    [20] KARACAN C Ö. Prediction of porosity and permeability of caved zone in longwall gobs[J]. Transport in Porous Media,2010,82(2):413-439. doi: 10.1007/s11242-009-9437-7
    [21] SZLAZAK J. The determination of a co-efficient of longwall gob permeability[J]. Archives of Mining Sciences,2001,46(4):451-468.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  130
  • HTML全文浏览量:  26
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-12
  • 修回日期:  2023-02-11
  • 网络出版日期:  2023-02-27

目录

    /

    返回文章
    返回