留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于人机关系的煤巷掘进作业优化

高宇 刘佳

高宇,刘佳. 基于人机关系的煤巷掘进作业优化[J]. 工矿自动化,2023,49(5):147-152.  doi: 10.13272/j.issn.1671-251x.2022070069
引用本文: 高宇,刘佳. 基于人机关系的煤巷掘进作业优化[J]. 工矿自动化,2023,49(5):147-152.  doi: 10.13272/j.issn.1671-251x.2022070069
GAO Yu, LIU Jia. Optimization of coal roadway heading operation based on human-machine relationship[J]. Journal of Mine Automation,2023,49(5):147-152.  doi: 10.13272/j.issn.1671-251x.2022070069
Citation: GAO Yu, LIU Jia. Optimization of coal roadway heading operation based on human-machine relationship[J]. Journal of Mine Automation,2023,49(5):147-152.  doi: 10.13272/j.issn.1671-251x.2022070069

基于人机关系的煤巷掘进作业优化

doi: 10.13272/j.issn.1671-251x.2022070069
基金项目: 国家自然科学基金资助项目(51874315)。
详细信息
    作者简介:

    高宇(1989—),男,山西大同人,工程师,主要从事煤矿生产技术方面的工作,E-mail:gaoyu89510@163.com

    通讯作者:

    刘佳 (1989—),女,山西兴县人,讲师,博士,主要研究方向为矿井瓦斯灾害防治、地下空间安全、数值模拟方法等,E-mail:15135150829@163.com

  • 中图分类号: TD263.2

Optimization of coal roadway heading operation based on human-machine relationship

  • 摘要: 目前针对煤巷掘进效率提升的研究大多从改进掘进设备的角度出发,对煤巷掘进作业工序及人员配置的考虑较少,而保持和谐稳定的人机关系是保障煤巷掘进效率的关键。以马道头煤矿8404工作面2404进风巷为工程背景,在考虑人机匹配关系的基础上,提出了煤巷掘进作业优化方案。对掘锚机割煤支护工序进行了优化,提出了顶部和帮部锚杆空间不成排的掘进巷道支护体系,即在连续作业2个循环进尺后不退掘锚机组,使顶部锚杆领先帮部锚杆300 mm,以节约巷道支护时间。数值模拟结果表明,顶部和帮部锚杆空间不成排支护的应力场与顶部和帮部锚杆空间对齐成排支护的应力场相差不大,验证了顶部和帮部锚杆空间不成排支护体系的可靠性。通过多工序并行作业优化了煤巷掘进作业流程,进而计算各工序任务量,优化各工序相关的人员配置。工程应用结果表明,基于人机关系对煤巷掘进作业进行优化后,日循环数由10次增加到15次,月进尺由300 m增加到450 m,工人效率从0.1 m/工提升到0.14 m/工,循环周期由80 min缩减到44.6 min,明显提升了煤巷掘进效率。

     

  • 图  1  不同锚杆布置下应力云图

    Figure  1.  Stress nephogram of different bolt arrangement

    图  2  煤巷掘进作业流程

    Figure  2.  Operation flow of coal roadway heading

    表  1  煤巷掘进作业工序任务量及人员配置

    Table  1.   Task quantity and personnel allocation of coal roadway heading operation

    工序任务量/min执行人数/个
    割煤7.81
    敲帮问顶2.52
    临时支护5.21
    安装顶部锚杆24.62
    安装上帮部锚杆16.42
    移动掘锚机组2.01
    安装顶部锚索25.62
    安装下帮部锚杆242
    移动掘锚机组2.01
    下载: 导出CSV

    表  2  煤巷掘进统计指标对比

    Table  2.   Comparison of statistical indexes of coal roadway heading

    指标优化前优化后
    循环进尺/m1.01.0
    日循环数/次1015
    月进尺/m300450
    工人效率/(m·工−10.100.14
    循环周期/min80.044.6
    出勤人数/个7171
     注:工人效率=日进尺×日循环数÷出勤人数×出勤率×制度工时利用率),此处出勤率为85%,制度工时利用率为80%。
    下载: 导出CSV
  • [1] 王国法,庞义辉,任怀伟,等. 煤炭安全高效综采理论、技术与装备的创新和实践[J]. 煤炭学报,2018,43(4):903-913.

    WANG Guofa,PANG Yihui,REN Huaiwei,et al. Coal safe and efficient mining theory,technology and equipment innovation practice[J]. Journal of China Coal Society,2018,43(4):903-913.
    [2] 查太东. 煤矿快速掘进系统现状及发展趋势[J]. 煤炭技术,2021,40(6):30-32.

    ZHA Taidong. Development trend and situation of speedy drivage system in coal mine[J]. Coal Technology,2021,40(6):30-32.
    [3] 张卫国. 复杂地质条件下煤巷快速掘进技术研究[J]. 机械管理开发,2022,37(3):118-119.

    ZHANG Weiguo. Research on rapid coal tunneling technology under complex geological conditions[J]. Mechanical Management and Development,2022,37(3):118-119.
    [4] 刘跃东,林健,杨建威,等. 基于掘锚一体化特厚顶煤巷道快速掘进与支护技术[J]. 煤炭科学技术,2017,45(10):60-65.

    LIU Yuedong,LIN Jian,YANG Jianwei,et al. Rapid excavation and supporting technology of ultra-thick top coal roadway based on excavation and bolting integration[J]. Coal Science and Technology,2017,45(10):60-65.
    [5] 罗文,杨俊彩. 神东矿区快速掘进装备与技术研究现状及展望[J]. 工矿自动化,2021,47(增刊2):32-38.

    LUO Wen,YANG Juncai. Research status and prospects on rapid tunneling equipment and technology in Shendong Mining Area[J]. Industry and Mine Automation,2021,47(S2):32-38.
    [6] 闫魏锋,石亮. 我国煤巷掘进技术与装备发展现状[J]. 煤矿机械,2018,39(12):1-3.

    YAN Weifeng,SHI Liang. Development status of coal roadway tunneling equipment and technology in China[J]. Coal Mine Machinery,2018,39(12):1-3.
    [7] 惠兴田,康高鹏. 煤巷快速掘进及超前临时支护研究[J]. 煤炭技术,2019,38(1):7-10.

    HUI Xingtian,KANG Gaopeng. Research on quick tunneling and leading temporary support in coal roadway[J]. Coal Technology,2019,38(1):7-10.
    [8] 张登山. 快速掘进系统研发及应用[J]. 煤炭科学技术,2015,43(增刊2):96-99.

    ZHANG Dengshan. Development and application on rapid driving system[J]. Coal Science and Technology,2015,43(S2):96-99.
    [9] 王一超. 煤巷掘锚一体化掘进技术研究与应用[J]. 能源与节能,2019(5):156-157,161.

    WANG Yichao. Research and application of integrated driving technology of coal roadway driving and anchoring[J]. Energy and Energy Conservation,2019(5):156-157,161.
    [10] 李富强. 黄白茨煤矿边掘边锚快速掘进系统设计[J]. 工矿自动化,2021,47(增刊1):64-66,95.

    LI Fuqiang. Design of fast driving system with anchor while driving in Huangbaici Coal Mine[J]. Industry and Mine Automation,2021,47(S1):64-66,95.
    [11] 韩阳红. 煤矿巷道高效掘进技术分析[J]. 能源与节能,2022(8):125-127.

    HAN Yanghong. Efficient tunneling technology of coal mine roadways[J]. Energy and Energy Conservation,2022(8):125-127.
    [12] 任瑞平. 煤巷掘锚一体机化快速掘进技术与应用分析[J]. 神华科技,2018,16(7):39-40,47.

    REN Ruiping. Quick digging technology and application analysis of integration of digging and anchoring machine of coal road[J]. Shenhua Technology,2018,16(7):39-40,47.
    [13] 张忠国. 煤巷快速掘进系统的发展趋势与关键技术[J]. 煤炭科学技术,2016,44(1):55-60.

    ZHANG Zhongguo. Development tendency and key technology of mine seam gateway rapid driving system[J]. Coal Science and Technology,2016,44(1):55-60.
    [14] 王国法,王虹,任怀伟,等. 智慧煤矿2025情景目标和发展路径[J]. 煤炭学报,2018,43(2):295-305.

    WANG Guofa,WANG Hong,REN Huaiwei,et al. 2025 scenarios and development path of intelligent coal mine[J]. Journal of China Coal Society,2018,43(2):295-305.
    [15] 王虹,王建利,张小峰. 掘锚一体化高效掘进理论与技术[J]. 煤炭学报,2020,45(6):2021-2030.

    WANG Hong,WANG Jianli,ZHANG Xiaofeng. Theory and technology of efficient roadway advance with driving and bolting integration[J]. Journal of China Coal Society,2020,45(6):2021-2030.
    [16] 李平. 煤矿巷道掘锚一体化快速掘进技术研究[J]. 能源与环保,2021,43(2):161-166.

    LI Ping. Research on integrated rapid excavation technology of tunnel driving and anchoring in coal mine[J]. China Energy and Environmental Protection,2021,43(2):161-166.
    [17] 温福平,杨永刚,于云飞,等. 煤巷掘探支运一体化快速作业线应用技术[J]. 煤炭技术,2021,40(7):9-12.

    WEN Fuping,YANG Yonggang,YU Yunfei,et al. Application technology of coal roadway excavation,exploration,support and transportation integrated rapid operation line[J]. Coal Technology,2021,40(7):9-12.
    [18] 张国锋. 煤矿掘锚一体机应用及改进分析[J]. 能源技术与管理,2019,44(2):139-140,146.

    ZHANG Guofeng. Application of the integral driving-anchor machine and its improvement[J]. Energy Technology and Management,2019,44(2):139-140,146.
    [19] 陈宇,张洋,耿继业,等. 高应力煤巷掘锚护一体化快速掘进工序优化与支护技术[J]. 煤矿安全,2019,50(7):120-123.

    CHEN Yu,ZHANG Yang,GENG Jiye,et al. Procedure optimization and support technology of tunneling-anchoring-shielding integration speedy drivage for high stress coal roadway[J]. Safety in Coal Mines,2019,50(7):120-123.
    [20] 陈玉,颜声远. 基于人机工程的煤矿机械人机界面安全评价[J]. 黑龙江科技大学学报,2015,25(6):692-696.

    CHEN Yu,YAN Shengyuan. Human-machine interface safety evaluation of coal mine machinery based on human-machine engineering[J]. Journal of Heilongjiang University of Science and Technology,2015,25(6):692-696.
    [21] 王帅. 巷道掘进施工人机环风险评价指标的建立[J]. 内蒙古煤炭经济,2017(增刊1):85-86.

    WANG Shuai. Establishment of man-machine environment risk assessment index for tunneling construction[J]. Inner Mongolia Coal Economy,2017(S1):85-86.
  • 加载中
图(2) / 表(2)
计量
  • 文章访问数:  119
  • HTML全文浏览量:  50
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-26
  • 修回日期:  2023-05-17
  • 网络出版日期:  2023-05-24

目录

    /

    返回文章
    返回