留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

叠加效应下多孔水力割缝联合抽采参数优化研究

倪兴

倪兴. 叠加效应下多孔水力割缝联合抽采参数优化研究[J]. 工矿自动化,2023,49(1):146-152.  doi: 10.13272/j.issn.1671-251x.2022060110
引用本文: 倪兴. 叠加效应下多孔水力割缝联合抽采参数优化研究[J]. 工矿自动化,2023,49(1):146-152.  doi: 10.13272/j.issn.1671-251x.2022060110
NI Xing. Optimization of multi-hole hydraulic cutting combined extraction parameters under superposition effect[J]. Journal of Mine Automation,2023,49(1):146-152.  doi: 10.13272/j.issn.1671-251x.2022060110
Citation: NI Xing. Optimization of multi-hole hydraulic cutting combined extraction parameters under superposition effect[J]. Journal of Mine Automation,2023,49(1):146-152.  doi: 10.13272/j.issn.1671-251x.2022060110

叠加效应下多孔水力割缝联合抽采参数优化研究

doi: 10.13272/j.issn.1671-251x.2022060110
基金项目: 国家重点研发计划资助项目(2017YF080420701)。
详细信息
    作者简介:

    倪兴(1987—),男,山东临朐人,助理研究员,硕士,主要从事矿井灾害防治研究工作,E-mail:nixing1960@163.com

  • 中图分类号: TD712

Optimization of multi-hole hydraulic cutting combined extraction parameters under superposition effect

  • 摘要: 针对低透高瓦斯煤层在水力割缝过程中存在割缝扰动范围不清、割缝钻孔最佳布孔间距不明确的问题,以贵州豫能高山煤矿1908工作面为研究背景,在建立水力割缝煤体瓦斯抽采流固耦合模型的基础上,借助COMSOL数值模拟软件对高山煤矿1908工作面水力割缝钻孔有效抽采半径、孔周瓦斯压力变化情况进行了研究,并依据模拟结果深入分析了水力割缝钻孔在多孔布置时,受孔间抽采叠加效应影响下有效抽采范围及孔间瓦斯压力变化情况,最终得出其最佳布孔间距及抽采时间。结果表明:① 水力割缝钻孔单孔抽采效果随割缝深度显著提升,但钻孔有效抽采半径增速变缓,为得到最佳割缝深度,对各钻孔有效抽采半径进行三项式拟合,随着水力割缝深度的增加,有效抽采半径范围在快速增加后放缓且最终趋于平稳,并得出了高山煤矿最佳割缝深度为1.5 m,有效抽采半径达为3.1 m。② 在相同抽采时间下,煤体内瓦斯压力随两孔距的缩短而降低,说明孔间距越小,孔间受水力割缝所造成的扰动越剧烈,抽采叠加效应影响越显著。③ 在保证消突达标的前提下,选择孔距为7 m进行水力割缝钻孔布置效果最佳。④ 原本在“正方形”布孔方式中,孔心位置可能出现抽采盲区的点最大瓦斯压力仅为0.67 MPa,小于临界值,“正方形”布孔较“正三角”布孔的有效覆盖面积更大且减少了抽采重复区域,从而减少了钻孔施工量,提高了瓦斯治理效率。⑤ 通过现场试验得出在60 d抽采周期内,水力割缝钻孔布置采用孔距为7 m的“正方形”布孔可有效提高瓦斯抽采浓度及抽采纯量,并达到了延长高效抽采周期的效果,且可消除孔间煤体瓦斯抽采空白带,实现孔间区域煤体消突达标。

     

  • 图  1  几何模型

    Figure  1.  Geometric model

    图  2  抽采60 d后各钻孔四周煤体瓦斯压力分布

    Figure  2.  The gas pressure distribution around each borehole after 60 days of extraction

    图  3  钻孔四周瓦斯压力变化曲线

    Figure  3.  Gas pressure variation curves around the borehole

    图  4  有效抽采半径随割缝深度变化趋势

    Figure  4.  The variation trend of the effective extraction radius varies with the cutting depth

    图  5  不同孔距双孔模型

    Figure  5.  The double borehde model with different borehole spacing

    图  6  不同孔距钻孔瓦斯压力随抽采时间变化云图

    Figure  6.  Cloud chart of gas pressure variation with extraction time in boreholes with different borehole spacing

    图  7  不同孔距及抽采时间下孔周瓦斯压力分布曲线

    Figure  7.  Distribution curves of borehole gas pressure under different borehole distance and extraction time

    图  8  布孔方式

    Figure  8.  The layout method of boreholes

    图  9  不同布孔方式的瓦斯抽采空白区域对消突的效果

    Figure  9.  Outburst elimination effect of gas extraction blank zone with different borehole layout methods

    图  10  不同布孔方式抽采60 d孔周瓦斯压力分布曲线

    Figure  10.  Gas pressure distribution curve around boreholes for 60 days with different borehole layout methods

    图  11  钻孔现场布置

    Figure  11.  Site layout of boreholes

    图  12  未使用水力割缝的抽采钻孔瓦斯参数

    Figure  12.  Gas parameters of extraction boreholes without hydraulic cutting

    图  13  水力割缝抽采钻孔瓦斯参数

    Figure  13.  Gas parameters of extraction borehole with hydraulic cutting

    表  1  数值模拟基础参数

    Table  1.   Numerical simulation of the basic parameters

    参数 参数值
    煤层初始瓦斯压力/MPa 1.04
    孔隙率 0.048
    煤体初始渗透率/m2 5.7×10−15
    割裂煤体渗透率/m2 3.4×10−11
    煤密度/(kg·m−3) 1 492
    瓦斯密度/(kg·m−3) 0.719
    泊松比 0.29
    黏聚力/MPa 0.92
    瓦斯动力黏度/(Pa·s) 1.71×10−5
    空气动力黏度/(Pa·s) 1.07×10−5
    下载: 导出CSV

    表  2  试验测点残余瓦斯压力、瓦斯含量

    Table  2.   Residual gas pressure and gas content of test measuring points

    孔号 残余瓦斯压力/MPa 残余瓦斯含量/(m3·t−1) 抽采率/%
    1 0.61 2.7 62.50
    2 0.57 3.3 54.17
    3 0.59 3.1 57.04
    4 0.62 2.9 59.72
    下载: 导出CSV
  • [1] 荆俊杰,于丽雅,延婧. 高瓦斯低渗煤层水力造穴增透技术优化研究[J]. 煤矿安全,2022,53(1):8-14,23.

    JING Junjie,YU Liya,YAN Jing. Research on optimization of hydraulic flushing and permeability enhancement technology in high gas and low permeability coal seam[J]. Safety in Coal Mines,2022,53(1):8-14,23.
    [2] 袁亮,林柏泉,杨威. 我国煤矿水力化技术瓦斯治理研究进展及发展方向[J]. 煤炭科学技术,2015,43(1):45-49. doi: 10.13199/j.cnki.cst.2015.01.011

    YUAN Liang,LIN Baiquan,YANG Wei. Research progress and development direction of gas control with mine hydraulic technology in China coal mine[J]. Coal Science and Technology,2015,43(1):45-49. doi: 10.13199/j.cnki.cst.2015.01.011
    [3] 许克南,王佰顺,刘青宏. 基于动态流固耦合模型的瓦斯 抽采半径及孔间距研究[J]. 煤炭科学术,2018,46(5):102-108.

    XU Kenan,WANG Baishun,LIU Qinghong. Study on gas drainage radius and distance between boreholes based on dynamic fluid-solid coupling model[J]. Coal Science and Technology,2018,46(5):102-108.
    [4] 杜金磊,张民波,张电吉,等. 低透气突出煤层水力割缝协同卸压增透技术[J]. 工矿自动化,2021,47(7):98-105. doi: 10.13272/j.issn.1671-251x.17698

    DU Jinlei,ZHANG Minbo,ZHANG Dianji,et al. Hydraulic cutting cooperative pressure relief and premeability enhancement technology in low permeability outburst coal seam[J]. Industry and Mine Automation,2021,47(7):98-105. doi: 10.13272/j.issn.1671-251x.17698
    [5] 刘生龙,朱传杰,林柏泉,等. 水力割缝空间分布模式对煤层卸压增透的作用规律[J]. 采矿与安全工程学报,2020,37(5):983-990. doi: 10.13545/j.cnki.jmse.2020.05.015

    LIU Shenglong,ZHU Chuanjie,LIN Baiquan,et al. The effect of spatial distribution mode of hydraulic slotting on pressure relief and permeability enhancement of the coal seam[J]. Journal of Mining & Safety Engineering,2020,37(5):983-990. doi: 10.13545/j.cnki.jmse.2020.05.015
    [6] 孙鑫,王海东,路丽刚. 煤层水力割缝转速对切割半径影 响规律研究[J]. 煤炭工程,2020,52(5):116-120.

    SUN Xin,WANG Haidong,LU Ligang. Research on the influence of coal seam hydraulic cutting speed on cutting radius[J]. Coal Engineering,2020,52(5):116-120.
    [7] 袁本庆. 煤巷条带水力化增透技术措施适用条件及评价指标初探[J]. 煤矿安全,2018,49(12):164-168. doi: 10.13347/j.cnki.mkaq.2018.12.042

    YUAN Benqing. Application conditions and evaluation indexes of hydraulic permeability enhancement technology in coal roadway strip mining[J]. Safety in Coal Mines,2018,49(12):164-168. doi: 10.13347/j.cnki.mkaq.2018.12.042
    [8] 林柏泉,赵洋,刘厅,等. 水力割缝煤体多场耦合响应规律研究[J]. 西安科技大学学报,2017,37(5):662-667. doi: 10.13800/j.cnki.xakjdxxb.2017.0510

    LIN Baiquan,ZHAO Yang,LIU Ting,et al. Coupling response law of multi-field in coal seam after hydraulic slotting[J]. Journal of Xi'an University of Science and Technology,2017,37(5):662-667. doi: 10.13800/j.cnki.xakjdxxb.2017.0510
    [9] 徐刚,张剀文,范亚飞. 叠加效应影响下钻孔有效抽采半径的数值模拟及布孔间距优化[J]. 矿业安全与环保,2021,48(1):91-96. doi: 10.19835/j.issn.1008-4495.2021.01.018

    XU Gang,ZHANG Kaiwen,FAN Yafei. Numerical simulation of effective drainage radius and optimization of hole spacing under the influence of stack effect[J]. Mining Safety & Environmental Protection,2021,48(1):91-96. doi: 10.19835/j.issn.1008-4495.2021.01.018
    [10] ZHANG Hongbin,LIU Jishan,ELSWORTH D. How sorption-induced matrix deformation affects gas flow in coal seams:a new FE model[J]. International Journal of Rock Mechanics and Mining Sciences,2008,45(8):1226-1236. doi: 10.1016/j.ijrmms.2007.11.007
    [11] 刘泉霖,王恩元,李忠辉,等. 夹矸对煤层瓦斯抽采影响的数值模拟研究[J]. 工矿自动化,2018,44(2):55-62. doi: 10.13272/j.issn.1671-251x.2017100046

    LIU Quanlin,WANG Enyuan,LI Zhonghui,et al. Numerical simulation study on influence of gangue on coal seam gas drainage[J]. Industry and Mine Automation,2018,44(2):55-62. doi: 10.13272/j.issn.1671-251x.2017100046
    [12] 李文,王广宏,欧聪,等. 不同布孔方式下梳状定向长钻孔水力压裂数值模拟及工程应用[J]. 煤矿安全,2021,52(5):72-77. doi: 10.13347/j.cnki.mkaq.2021.05.013

    LI Wen,WANG Guanghong,OU Cong,et al. Numerical simulation and engineering application of comb-shaped directional long borehole hydraulic fracturing under different arrangement of holes[J]. Safety in Coal Mines,2021,52(5):72-77. doi: 10.13347/j.cnki.mkaq.2021.05.013
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  36
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-30
  • 修回日期:  2022-08-29
  • 网络出版日期:  2022-08-30

目录

    /

    返回文章
    返回