留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正、逆断层上盘开采冲击地压危险性分析

魏世明 王富莹 张泽升 靳梦帆

魏世明,王富莹,张泽升,等. 正、逆断层上盘开采冲击地压危险性分析[J]. 工矿自动化,2022,48(8):69-75.  doi: 10.13272/j.issn.1671-251x.2022030041
引用本文: 魏世明,王富莹,张泽升,等. 正、逆断层上盘开采冲击地压危险性分析[J]. 工矿自动化,2022,48(8):69-75.  doi: 10.13272/j.issn.1671-251x.2022030041
WEI Shiming, WANG Fuying, ZHANG Zesheng, et al. Analysis of rock burst risk of mining in hanging wall of normal and reverse faults[J]. Journal of Mine Automation,2022,48(8):69-75.  doi: 10.13272/j.issn.1671-251x.2022030041
Citation: WEI Shiming, WANG Fuying, ZHANG Zesheng, et al. Analysis of rock burst risk of mining in hanging wall of normal and reverse faults[J]. Journal of Mine Automation,2022,48(8):69-75.  doi: 10.13272/j.issn.1671-251x.2022030041

正、逆断层上盘开采冲击地压危险性分析

doi: 10.13272/j.issn.1671-251x.2022030041
基金项目: 国家自然科学基金项目(51674099)。
详细信息
    作者简介:

    魏世明(1979-),男,河南兰考人,副教授,博士,主要从事采矿工程、岩石力学及光纤传感监测方面的教学及研究工作,E-mail: sming2002cn@163.com

  • 中图分类号: TD324

Analysis of rock burst risk of mining in hanging wall of normal and reverse faults

  • 摘要: 现有针对不同条件下断层冲击地压危险性的研究大部分围绕下盘开采或单一断层形式展开,而对于不同断层上盘开采冲击地压危险性的对比研究较少涉及。针对上述问题,以河南义马耿村煤矿12220工作面为研究背景,借助理论分析、数值模拟及现场监测等方法,对正、逆断层上盘开采时冲击地压危险性进行了分析。建立了正、逆断层上盘开采的力学模型,通过对断层岩块的受力分析,得出了断层上下剪滑的力学条件,理论分析结果表明:正、逆断层上盘开采时断层是否发生剪滑与断层倾角、断层内摩擦角及岩块受到的断层面作用力等因素密切相关,且工作面越靠近断层,发生剪滑的危险性越大。开展了正、逆断层上盘开采过程的数值模拟研究,对断层面法向应力、剪切应力及滑移量变化进行了分析,结果表明:在工作面开采过程中,当工作面距断层距离小于40 m后发生剪滑及冲击地压的危险性逐渐增加,距断层10 m时危险性最大,最易发生剪滑的位置为断层面的煤层顶板和煤层处,煤层底板受开采影响程度明显小于顶板;断层类型对冲击地压危险性有一定的影响,逆断层开采时的冲击地压危险性高于正断层。对12220工作面的冲击地压危险性进行了微震监测,结果表明:当工作面距断层小于20 m时,微震事件频繁,冲击地压危险性较大,与数值模拟结果一致,验证了数值模拟分析的合理性。

     

  • 图  1  正、逆断层上盘开采力学模型

    Figure  1.  Mechanical model of mining in hanging wall of normal and reverse faults

    图  2  断层模型及测点布置

    Figure  2.  Fault model and layout of measuring points

    图  3  正断层上盘开采断层面应力变化

    Figure  3.  Stress variation of fault plane when mining in hanging wall of normal fault

    图  4  正断层上盘开采断层面滑移量变化

    Figure  4.  Variation of slippage of fault plane when mining in hanging wall of normal fault

    图  5  逆断层上盘开采断层面应力变化

    Figure  5.  Stress variation of fault plane when mining in hanging wall of reverse fault

    图  6  逆断层上盘开采断层面滑移量变化

    Figure  6.  Variation of slippage of fault plane when mining in hanging wall of reverse fault

    图  7  工作面微震监测探头布置

    Figure  7.  Layout of microseismic monitoring probes in working face

    图  8  微震监测能量变化

    Figure  8.  Variation of energy of microseismic monitoring

    表  1  模型各岩层力学参数

    Table  1.   Mechanical parameters of each stratum of the model

    岩性密度/
    (kg·m−3
    体积
    模量/GPa
    剪切
    模量/GPa
    黏聚力/
    MPa
    抗拉
    强度/MPa
    内摩
    擦角/(º)
    粗砂岩2 50020.808.3015.829.235
    砂岩2 56010.704.605.933.128
    细砂岩2 70010.804.302.825.630
    粉砂岩2 5006.803.302.820.328
    1 4401.340.451.101.525
    泥岩2 5003.201.201.821.528
    底板细砂岩2 70010.804.302.825.630
    底板砂岩2 56010.706.605.933.130
    底板粗砂岩2 50011.805.305.825.230
    断层面1 8000.100.403.565.330
    下载: 导出CSV
  • [1] 姜耀东,潘一山,姜福兴,等. 我国煤炭开采中的冲击地压机理和防治[J]. 煤炭学报,2014,39(2):205-213. doi: 10.13225/j.cnki.jccs.2013.0024

    JIANG Yaodong,PAN Yishan,JIANG Fuxing,et al. State of the art review on mechanism and prevention of coal bumps in China[J]. Journal of China Coal Society,2014,39(2):205-213. doi: 10.13225/j.cnki.jccs.2013.0024
    [2] 潘一山,王来贵,章梦涛,等. 断层冲击矿压发生的理论与试验研究[J]. 岩石力学与工程学报,1998,17(6):642-649. doi: 10.3321/j.issn:1000-6915.1998.06.006

    PAN Yishan,WANG Laigui,ZHANG Mengtao,et al. The theoretical and testing study of fault rockburst[J]. Chinese Journal of Rock Mechanics and Engineering,1998,17(6):642-649. doi: 10.3321/j.issn:1000-6915.1998.06.006
    [3] 周睿,张占存,陈洋. 逆断层活化范围变化规律数值模拟[J]. 煤矿安全,2016,47(11):197-199,203. doi: 10.13347/j.cnki.mkaq.2016.11.055

    ZHOU Rui,ZHANG Zhancun,CHEN Yang. Numerical simulation of change laws in reverse fault activating scope[J]. Safety in Coal Mines,2016,47(11):197-199,203. doi: 10.13347/j.cnki.mkaq.2016.11.055
    [4] 杨继强,张照允,王珂. 正断层上盘边角煤开采诱发断层活化规律[J]. 煤矿安全,2018,49(12):204-207,211. doi: 10.13347/j.cnki.mkaq.2018.12.051

    YANG Jiqiang,ZHANG Zhaoyun,WANG Ke. Activation laws of normal fault induced by edge coal mining in upper wall[J]. Safety in Coal Mines,2018,49(12):204-207,211. doi: 10.13347/j.cnki.mkaq.2018.12.051
    [5] 孔朋,蒋金泉,王普,等. 正断层两盘不同开采顺序的支承应力演化规律[J]. 煤矿安全,2017,48(10):65-68. doi: 10.13347/j.cnki.mkaq.2017.10.017

    KONG Peng,JIANG Jinquan,WANG Pu,et al. Bearing stress evolution law of normal fault under two different mining sequence[J]. Safety in Coal Mines,2017,48(10):65-68. doi: 10.13347/j.cnki.mkaq.2017.10.017
    [6] 李忠华,梁影,包思远,等. 断层冲击地压的影响因素分析[J]. 中国地质灾害与防治学报,2020,31(3):126-131. doi: 10.16031/j.cnki.issn.1003-8035.2020.03.17

    LI Zhonghua,LIANG Ying,BAO Siyuan,et al. Analysis on influence factors of the fault rock burst[J]. The Chinese Journal of Geological Hazard and Control,2020,31(3):126-131. doi: 10.16031/j.cnki.issn.1003-8035.2020.03.17
    [7] 易恩兵. 深井工作面断层区域冲击地压防治分析[J]. 矿业研究与开发,2018,38(12):57-60. doi: 10.13827/j.cnki.kyyk.2018.12.013

    YI Enbing. Analysis and prevention on rock burst in fault area of working face in deep mine[J]. Mining Research and Development,2018,38(12):57-60. doi: 10.13827/j.cnki.kyyk.2018.12.013
    [8] 王学滨,郭长升,邓超群. 正、逆断层下盘开采断层及其附近煤层应力时空分布的数值模拟[J]. 地球物理学进展,2020,35(5):1993-2000. doi: 10.6038/pg2020DD0294

    WANG Xuebin,GUO Changsheng,DENG Chaoqun. Numerical simulation of spatiotemporal distributions of stresses on the fault and coal seam in the vicinity of the fault for mining in the footwall of the normal and reverse fault[J]. Progress in Geophysics,2020,35(5):1993-2000. doi: 10.6038/pg2020DD0294
    [9] 王涛,由爽,高宇. 推进方式对断层围岩应力演化规律的影响[J]. 采矿与安全工程学报,2017,34(2):276-281,286. doi: 10.13545/j.cnki.jmse.2017.02.011

    WANG Tao,YOU Shuang,GAO Yu. The influence of different mining modes on the evolution law of stress in fault surrounding rock[J]. Journal of Mining & Safety Engineering,2017,34(2):276-281,286. doi: 10.13545/j.cnki.jmse.2017.02.011
    [10] 赵毅鑫,王浩,焦振华,等. 逆断层下盘工作面回采扰动引发断层活化特征的实验研究[J]. 煤炭学报,2018,43(4):914-922.

    ZHAO Yixin,WANG Hao,JIAO Zhenhua,et al. Experimental study of the activities of reverse fault induced by footwall coal mining[J]. Journal of China Coal Society,2018,43(4):914-922.
    [11] 闵飞虎,向必伟,刘辉,等. 采动影响下逆断层活化规律的数值模拟[J]. 煤田地质与勘探,2019,47(4):144-152. doi: 10.3969/j.issn.1001-1986.2019.04.022

    MIN Feihu,XIANG Biwei,LIU Hui,et al. Numerical simulation on mechanism of thrust fault reactivation during mining[J]. Coal Geology & Exploration,2019,47(4):144-152. doi: 10.3969/j.issn.1001-1986.2019.04.022
    [12] 赵善坤. 采动影响下逆冲断层“活化”特征试验研究[J]. 采矿与安全工程学报,2016,33(2):354-360. doi: 10.13545/j.cnki.jmse.2016.02.026

    ZHAO Shankun. Experiments on the characteristics of thrust fault activation influenced by mining operation[J]. Journal of Mining & Safety Engineering,2016,33(2):354-360. doi: 10.13545/j.cnki.jmse.2016.02.026
    [13] 陈学华,吕鹏飞,宋卫华,等. 综放开采过断层冲击地压危险分析及防治技术[J]. 中国安全科学学报,2016,26(5):81-87. doi: 10.16265/j.cnki.issn1003-3033.2016.05.015

    CHEN Xuehua,LYU Pengfei,SONG Weihua,et al. Analysis and control technology of danger of rock burst when fully mechanized caving passing through fault[J]. China Safety Science Journal,2016,26(5):81-87. doi: 10.16265/j.cnki.issn1003-3033.2016.05.015
    [14] 任政,姜耀东. 采动影响下逆断层冲击地压矿震时空分布规律分析[J]. 矿业科学学报,2020,5(5):482-489. doi: 10.19606/j.cnki.jmst.2020.05.002

    REN Zheng,JIANG Yaodong. Analysis of spatial and temporal distribution laws of mine earthquake induced by thrust fault coal bumps under mining disturbance[J]. Journal of Mining Science and Technology,2020,5(5):482-489. doi: 10.19606/j.cnki.jmst.2020.05.002
    [15] 刘洪儒,李宗超,代进,等. 正断层下盘采动支承压力分布及对上盘的影响分析[J]. 山东科技大学学报(自然科学版),2014,33(3):48-53.

    LIU Hongru,LI Zongchao,DAI Jin,et al. Abutment pressure distribution and impact analysis on the plate in normal faults[J]. Journal of Shandong University of Science and Technology (Natural Science),2014,33(3):48-53.
    [16] 许磊,魏世明. 逆断层活化诱发冲击地压危险性研究[J]. 煤炭技术,2015,34(1):98-101.

    XU Lei,WEI Shiming. Research on risk of rock burst induced by reverse fault activation[J]. Coal Technology,2015,34(1):98-101.
    [17] 王浩. 采动应力场下地质弱面张剪活化诱冲机制及防治研究[D]. 北京: 中国矿业大学(北京), 2018.

    WANG Hao. Research on the prevention and mechanism of coal burst induced by geological weak-plane tensile-slip activities during mining[D]. Beijing: China University of Mining and Technology-Beijing, 2018.
    [18] 马智勇,郑树栋,张洋,等. 耿村煤矿冲击地压综合防治技术研究[J]. 陕西煤炭,2014,33(2):51-53. doi: 10.3969/j.issn.1671-749X.2014.02.018

    MA Zhiyong,ZHENG Shudong,ZHANG Yang,et al. Research on integrated control technology of rock burst in Gengcun Coal Mine[J]. Shaanxi Coal,2014,33(2):51-53. doi: 10.3969/j.issn.1671-749X.2014.02.018
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  139
  • HTML全文浏览量:  21
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-09
  • 修回日期:  2022-08-06
  • 网络出版日期:  2022-07-07

目录

    /

    返回文章
    返回