留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤矿微震监测台网监测能力分析与优化方法

陈法兵 吴红军 崔保阁 王元杰 李岩

陈法兵,吴红军,崔保阁,等. 煤矿微震监测台网监测能力分析与优化方法[J]. 工矿自动化,2022,48(7):96-104.  doi: 10.13272/j.issn.1671-251x.2022020048
引用本文: 陈法兵,吴红军,崔保阁,等. 煤矿微震监测台网监测能力分析与优化方法[J]. 工矿自动化,2022,48(7):96-104.  doi: 10.13272/j.issn.1671-251x.2022020048
CHEN Fabing, WU Hongjun, CUI Baoge, et al. Analysis and optimization method of monitoring capability of coal mine microseismic monitoring network[J]. Journal of Mine Automation,2022,48(7):96-104.  doi: 10.13272/j.issn.1671-251x.2022020048
Citation: CHEN Fabing, WU Hongjun, CUI Baoge, et al. Analysis and optimization method of monitoring capability of coal mine microseismic monitoring network[J]. Journal of Mine Automation,2022,48(7):96-104.  doi: 10.13272/j.issn.1671-251x.2022020048

煤矿微震监测台网监测能力分析与优化方法

doi: 10.13272/j.issn.1671-251x.2022020048
基金项目: 天地科技股份有限公司科技创新创业资金专项项目(2019-TD-CXY004,2019-TD-CXY006)。
详细信息
    作者简介:

    陈法兵(1985—),男,山东泰安人,助理研究员,硕士,主要从事煤矿冲击地压机理与防治技术研究工作,E-mail:727479294@qq.com

  • 中图分类号: TD326

Analysis and optimization method of monitoring capability of coal mine microseismic monitoring network

  • 摘要: 微震监测台网的监测能力取决于多种因素,如台网布置、速度模型、震相读取误差、走时区域异常、定位算法、设备运行状态和环境噪声等,其中台网布置现阶段可以人为优化。为了对微震监测台网的监测能力进行有效评价,并在此基础上对台网布置进行优化,提出了一种煤矿微震监测台网监测能力分析与优化方法。分析了台网布置因素中对微震监测台网监测能力影响最大、最直接的四因素:有效波形数、最大空隙角、近台震中距和台站高差,指出有效波形数、近台震中距和台站高差对震源深度求解误差起决定性作用,有效波形数和最大空隙角对震中定位精度起决定性作用。结合现有台网和工作面情况,得出四因素的分布云图,通过四因素分布云图逐项对微震监测台网监测能力进行评价,根据评价结果进行优化,得出新的台网布置方案;对新方案进行定位误差与灵敏度分析,得出全矿井的震中定位误差、震源定位误差及区域灵敏度,对新方案进行二次评价;若二次评价结果满足要求,则可将新方案作为最佳台网布置方案;若二次评价结果不满足要求,则重新进行四因素分项评价并对方案进行优化,直至满足要求为止。现场试验结果表明,利用提出的方法对唐口煤矿5307工作面的微震监测台网进行优化后,爆破震源定位误差均值由59.2 m降到37.2 m,定位误差最大值降到100 m以下,误差在50 m以下的爆破事件占总数的69.0%,说明提出的方法能够有效提高微震定位精度,优化台网监测能力。

     

  • 图  1  震动波的传播

    Figure  1.  Propagation of shock waves

    图  2  最大空隙角

    Figure  2.  Maximum gap angle

    图  3  震源深度求解误差与近台震中距的关系

    Figure  3.  The relationship between the epicenter depth solution error and the near-station epicenter distance

    图  4  台站高差对震源深度求解精度的影响

    Figure  4.  Influence of height difference between stations on the accuracy of epicenter depth solution

    图  5  台网监测能力分级评价与优化流程

    Figure  5.  Grading evaluation and optimization process of network monitoring capability

    图  6  微震台网布置方案

    Figure  6.  Microseismic network layout plan

    图  7  有效波形数云图

    Figure  7.  Cloud map of effective waveform number

    图  8  最大空隙角云图

    Figure  8.  Cloud map of maximum gap angle

    图  9  近台震中距等值线

    Figure  9.  Contour line of near-station epicenter distance

    图  10  震源定位误差等值线

    Figure  10.  Contour line of hypocenter positioning error

    图  11  区域灵敏度等值线

    Figure  11.  Contour line of area sensitivity

    图  12  典型爆破波形

    Figure  12.  Typical blasting waveforms

    图  13  震源定位误差区间分布

    Figure  13.  The distribution of hypocenter positioning error interval

    表  1  2种情况下的台站坐标

    Table  1.   Station coordinates in 2 cases m

    台站编号台站无高差台站高差合理
    xiyizixiyizi
    1470450−600470450−500
    2770450−600770450−550
    31070450−6001070450−600
    41370550−6001370550−650
    51070650−6001070650−700
    6770650−600770650−560
    7470650−600470650−620
    下载: 导出CSV

    表  2  台网监测能力分级评价结论与改进措施

    Table  2.   Classification evaluation conclusions and improvement measures of network monitoring capability

    研究项评价结论改进措施
    有效波形数台站数少增加3个台站
    最大空隙角单侧布置工作面后方增加S7,S8
    近台震中距低值区小工作面前方增加S6
    台站高差需要扩大S7,S8位于630轨道大巷内
    下载: 导出CSV

    表  3  优化前后台站坐标

    Table  3.   Station coordinates before and after optimization m

    阶段台站xiyizi
    优化前T1394527673921063−901
    T2394529113920964−891
    T3394527433920849−903
    S4394527503920312−958
    S5394531163920053−964
    优化后T1394527673921063−901
    T2394530373920889−888
    T3394527433920849−903
    S4394527503920312−958
    S5394531163920053−964
    S6394530763920616−889
    S7394521233920745−958
    S8394516133921114−949
    下载: 导出CSV

    表  4  震源定位误差对比

    Table  4.   Comparison of hypocenter positioning error

    对比项误差
    均值/m
    误差
    标准差/m
    误差
    最大值/m
    误差≤50 m
    事件占比/%
    优化前59.238.717545.5
    优化后37.223.29669.0
    改进度/%37.240.145.151.6
    下载: 导出CSV
  • [1] 姜福兴,杨淑华,成云海,等. 煤矿冲击地压的微地震监测研究[J]. 地球物理学报,2006,49(5):1511-1516. doi: 10.3321/j.issn:0001-5733.2006.05.032

    JIANG Fuxing,YANG Shuhua,CHENG Yunhai,et al. A study on microseismic monitoring of rock burst in coal mine[J]. Chinese Journal of Geophysics,2006,49(5):1511-1516. doi: 10.3321/j.issn:0001-5733.2006.05.032
    [2] 徐奴文,唐春安,沙椿,等. 锦屏一级水电站左岸边坡微震监测系统及其工程应用[J]. 岩石力学与工程学报,2010,29(5):915-925.

    XU Nuwen,TANG Chun'an,SHA Chun,et al. Microseismic monitoring system establishment and its engineering applications to left bank slope of Jinping I Hydropower Station[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(5):915-925.
    [3] 巩思园,窦林名,曹安业,等. 煤矿微震监测台网优化布设研究[J]. 地球物理学报,2010,53(2):457-465. doi: 10.3969/j.issn.0001-5733.2010.02.025

    GONG Siyuan,DOU Linming,CAO Anye,et al. Study on optimal configuration of seismological observation network for coal mine[J]. Chinese Journal of Geophysics,2010,53(2):457-465. doi: 10.3969/j.issn.0001-5733.2010.02.025
    [4] 唐礼忠,杨承祥,潘长良. 大规模深井开采微震监测系统站网布置优化[J]. 岩石力学与工程学报,2006,25(10):2036-2042. doi: 10.3321/j.issn:1000-6915.2006.10.014

    TANG Lizhong,YANG Chengxiang,PAN Changliang. Optimization of microseismic monitoring network for large-scale deep well mining[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(10):2036-2042. doi: 10.3321/j.issn:1000-6915.2006.10.014
    [5] 邱宇,蒋长胜,司政亚. 地震监测台网优化布局技术方法综述[J]. 地球物理学进展,2020,35(3):866-873. doi: 10.6038/pg2020DD0069

    QIU Yu,JIANG Changsheng,SI Zhengya. Summary of technical methods for optimizing layout of seismic monitoring network[J]. Progress in Geophysics,2020,35(3):866-873. doi: 10.6038/pg2020DD0069
    [6] 李楠,王恩元,李保林,等. 传感器台网布设对震源定位的影响规律及机制研究[J]. 中国矿业大学学报,2017,46(2):229-236.

    LI Nan,WANG Enyuan,LI Baolin,et al. Research on the influence law and mechanisms of sensors network layouts for the source location[J]. Journal of China University of Mining & Technology,2017,46(2):229-236.
    [7] 曹英莉,刘玉桥,邓红卫. 矿山微震监测台网多目标优化决策模型研究及应用[J]. 矿业研究与开发,2021,41(11):34-43.

    CAO Yingli,LIU Yuqiao,DENG Hongwei. Research and application on multi-objective optimization decision model for mine microseismic monitoring network[J]. Mining Research and Development,2021,41(11):34-43.
    [8] 崔宇,李夕兵,董陇军,等. 玲珑金矿微震监测台网布设优化[J]. 黄金科学技术,2019,27(3):417-424.

    CUI Yu,LI Xibing,DONG Longjun,et al. Optimization of micro-seismic monitoring network layout in Linglong Gold Mine[J]. Gold Science and Technology,2019,27(3):417-424.
    [9] 梁姗姗,邹立晔,赵博,等. 中国测震台网地震监测能力初步分析[J]. 地震地磁观测与研究,2021,42(6):68-75. doi: 10.3969/j.issn.1003-3246.2021.06.010

    LIANG Shanshan,ZOU Liye,ZHAO Bo,et al. Preliminary analysis of seismic monitoring capability of China Seismic Network[J]. Seismological and Geomagnetic Observation and Research,2021,42(6):68-75. doi: 10.3969/j.issn.1003-3246.2021.06.010
    [10] 胡先明,邵玉平. 水库地震台网监测能力计算方法−基于G−R关系式[J]. 地震地质,2010,32(4):647-655. doi: 10.3969/j.issn.0253-4967.2010.04.012

    HU Xianming,SHAO Yuping. Calculation method of monitoring capability of reservoir seismic network:based on G-R relationship[J]. Seismology and Geology,2010,32(4):647-655. doi: 10.3969/j.issn.0253-4967.2010.04.012
    [11] 徐刚,陈法兵,张振金,等. 井上下微震联合监测震源垂直定位精度优化研究[J]. 煤炭科学技术,2020,48(2):80-88.

    XU Gang,CHEN Fabing,ZHANG Zhenjin,et al. Study on optimization of vertical location accuracy of seismic source based on joint monitoring of surface and underground micro-seismic monitoring[J]. Coal Science and Technology,2020,48(2):80-88.
    [12] 蔡永顺,张龙,张达,等. 基于Sigma−Optimal方法的微震监测台网设计及优化[J]. 有色金属(矿山部分),2019,71(1):79-84. doi: 10.3969/j.issn.1671-4172.2019.01.016

    CAI Yongshun,ZHANG Long,ZHANG Da,et al. Design and optimization of microseismic monitoring network based on Sigma-Optimal method[J]. Nonferrous Metals(Mining Section),2019,71(1):79-84. doi: 10.3969/j.issn.1671-4172.2019.01.016
    [13] 陈法兵. 矿山微震定位子台网的分布对定位精度的影响[J]. 煤矿开采,2016,21(4):107-114.

    CHEN Fabing. Influence of mine microseism location sub network distribution to positioning precision[J]. Coal Mining Technology,2016,21(4):107-114.
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  141
  • HTML全文浏览量:  16
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-24
  • 修回日期:  2022-07-09
  • 网络出版日期:  2022-04-14

目录

    /

    返回文章
    返回