留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于综合赋权的煤层底板突水危险性评价

郑剑英

郑剑英. 基于综合赋权的煤层底板突水危险性评价[J]. 工矿自动化,2022,48(8):140-146.  doi: 10.13272/j.issn.1671-251x.2022010016
引用本文: 郑剑英. 基于综合赋权的煤层底板突水危险性评价[J]. 工矿自动化,2022,48(8):140-146.  doi: 10.13272/j.issn.1671-251x.2022010016
ZHENG Jianying. Risk assessment of water inrush from coal seam floor based on comprehensive weighting[J]. Journal of Mine Automation,2022,48(8):140-146.  doi: 10.13272/j.issn.1671-251x.2022010016
Citation: ZHENG Jianying. Risk assessment of water inrush from coal seam floor based on comprehensive weighting[J]. Journal of Mine Automation,2022,48(8):140-146.  doi: 10.13272/j.issn.1671-251x.2022010016

基于综合赋权的煤层底板突水危险性评价

doi: 10.13272/j.issn.1671-251x.2022010016
基金项目: 国家能源集团国家重点实验室基金项目(WPUKFJJ2019-18)。
详细信息
    作者简介:

    郑剑英(1984—),男,内蒙古鄂尔多斯人,工程师,硕士,主要从事煤矿灾害预测与防治研究工作,E-mail:2087542904@qq.com

  • 中图分类号: TD745

Risk assessment of water inrush from coal seam floor based on comprehensive weighting

  • 摘要: 针对现有煤层底板突水危险性评价模型针对含复杂地质构造工作面泛化能力不强且准确性较低的问题,提出一种基于层次分析法(AHP)和改进熵权法(IEW)综合赋权的煤层底板突水危险性评价模型。基于单指标未确知测度,采用AHP−IEW综合赋权法给出影响煤层底板突水各评价指标的综合权重;建立煤层底板突水危险性综合评价模型,运用该模型计算各评价指标的未确知测度值,再根据置信度识别准则进行等级判定,得出评价结果。以盘道煤业有限公司1305工作面为研究对象验证该模型的可行性:① 根据该煤矿的实际情况,选取影响底板突水风险的开采深度、煤层厚度、煤层倾角、含水层水压、有效隔水层厚度、底板脆性岩厚度、断层分形维数、底板完整性作为评价指标,并建立了底板突水危险性分级标准;② 构建单指标测度函数,得到各评价指标的测度值;③ 采用AHP−IEW综合赋权法得到各评价指标的综合权重;④ 结合综合权重和评价指标的未确知测度矩阵确定综合测度评价向量;⑤ 根据综合测度评价向量对该煤矿研究区域内的调查点进行危险等级划分,并与现场调查结果进行对比分析。验证结果表明:与IEW评价结果相比,基于AHP−IEW综合赋权的煤层底板突水危险性评价模型的预测结果更准确,评价结果与工作面开采过程中的实际调查情况相符。

     

  • 图  1  研究区域

    Figure  1.  Study area

    图  2  水文地质柱状图

    Figure  2.  Hydrogeological histogram

    图  3  底板突水风险单指标测度函数

    Figure  3.  Single index measure function of floor water inrush risk

    表  1  底板突水风险评价指标分级标准

    Table  1.   Graded standard of risk assessment indexes of floor water inrush

    评价指标评价指标等级
    Ⅰ(C1Ⅱ(C2Ⅲ(C3Ⅳ(C4Ⅴ(C5
    X1/m<300300~450450~600600~800>800
    X2/m<1.51.5~33~4.54.5~6>6
    X3/(°)<55~1010~2020~30>30
    X4/MPa<11~22~33~4>4
    X5/m>9575~9555~7535~55<35
    X6/m>3025~3020~2515~20<15
    X7<0.30.3~0.50.5~0.70.7~0.9>0.9
    X80.9~10.75~0.90.5~0.750.2~0.50~0.2
    下载: 导出CSV

    表  2  研究区工作面影响因素定量结果

    Table  2.   Quantitative results of influencing factors of working face in study area

    调查点编号评价指标
    X1/mX2/mX3/(°)X4/MPaX5/mX6/mX7X8
    D3−1520.656.27.03.63111.5223.040.824 60.70
    D3−2499.135.99.32.74117.5522.200.720 30.54
    D3−3534.725.44.33.4094.6223.210.864 20.85
    D3−4528.456.16.53.56108.8223.860.598 40.60
    D3−5483.565.68.52.38102.8323.300.987 40.79
    D3−6456.725.78.03.0693.6223.380.563 50.50
    D3−7502.435.34.62.08108.1622.320.863 50.79
    下载: 导出CSV

    表  3  工作面底板突水风险评价指标权重

    Table  3.   Weight value of risk assessment indexes of floor water inrush of working face

    评价指标$ {w'_j} $$ {w''_j} $$ {w_j} $
    X10.038 60.117 10.077 9
    X20.025 00.127 10.076 1
    X30.019 00.127 20.073 1
    X40.262 90.121 80.192 4
    X50.155 80.128 60.142 2
    X60.104 70.125 10.114 9
    X70.253 50.126 10.189 9
    X80.140 40.126 90.133 7
    下载: 导出CSV

    表  4  底板突水风险评价结果

    Table  4.   Risk assessment results of floor water inrush

    调查点编号综合未确知测度AHP−IEW评价结果现场调查结果(是否出水)IEW评价结果
    Ⅰ(C1Ⅱ(C2Ⅲ(C3Ⅳ(C4Ⅴ(C5
    D3−10.156 80.123 30.261 70.285 60.172 8
    D3−20.142 20.069 00.504 30.218 80.066 0
    D3−30.254 50.110 90.191 40.306 30.137 1
    D3−40.171 40.075 10.283 10.371 40.099 2
    D3−50.142 20.236 70.355 30.040 60.225 4
    D3−60.122 60.253 80.284 70.293 40.045 7
    D3−70.215 30.202 80.311 90.144 50.125 7
    下载: 导出CSV
  • [1] 马丹,段宏宇,张吉雄,等. 断层破碎带岩体突水灾害的蠕变−冲蚀耦合力学特性试验研究[J]. 岩石力学与工程学报,2021,40(9):1751-1763.

    MA Dan,DUAN Hongyu,ZHANG Jixiong,et al. Experimental investigation of creep-erosion coupling mechanical properties of water inrush hazards in fault fracture rock masses[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(9):1751-1763.
    [2] 武强,樊振丽,刘守强,等. 基于GIS的信息融合型含水层富水性评价方法−富水性指数法[J]. 煤炭学报,2011,36(7):1124-1128. doi: 10.13225/j.cnki.jccs.2011.07.002

    WU Qiang,FAN Zhenli,LIU Shouqiang,et al. Water-richness evaluation method of water-filled aquifer based on the principle of information fusion with GIS:water-richness index method[J]. Journal of China Coal Society,2011,36(7):1124-1128. doi: 10.13225/j.cnki.jccs.2011.07.002
    [3] 王鑫,郑洁铭,张成行,等. 基于AHP熵值法的煤层底板突水预测评价[J]. 中国煤炭,2018,44(12):126-130. doi: 10.3969/j.issn.1006-530X.2018.12.028

    WANG Xin,ZHENG Jieming,ZHANG Chenghang,et al. Forecast and evaluation of water inrush from coal floor based on AHP entropy method[J]. China Coal,2018,44(12):126-130. doi: 10.3969/j.issn.1006-530X.2018.12.028
    [4] 张文泉,张新,焦钰峰. 基于PCA−GA−LSSVR的工作面涌水量预测[J]. 煤炭技术,2016,35(5):144-147.

    ZHANG Wenquan,ZHANG Xin,JIAO Yufeng. Prediction of mining face inflow based on PCA-GA-LSSVR[J]. Coal Technology,2016,35(5):144-147.
    [5] 张晓亮. 熵权耦合层次分析赋权在煤层底板突水评价中的应用[J]. 煤田地质与勘探,2017,45(3):91-95. doi: 10.3969/j.issn.1001-1986.2017.03.017

    ZHANG Xiaoliang. Application of entropy weight method and analytic hierarchy process in evaluation of water inrush from coal seam floor[J]. Coal Geology & Exploration,2017,45(3):91-95. doi: 10.3969/j.issn.1001-1986.2017.03.017
    [6] 刘伟韬,孙茜,徐百超. 基于GIS及主成分熵权法的底板突水危险性评价[J]. 矿业研究与开发,2020,40(11):83-88.

    LIU Weitao,SUN Xi,XU Baichao. Risk evaluation of water inrush from coal seam floor based on GIS and principal component analysis-entropy weight method[J]. Mining Research and Development,2020,40(11):83-88.
    [7] 张成行,郑洁铭,张玉卓,等. 基于Surfer的煤层底板突水评价方法及其应用[J]. 矿业安全与环保,2020,47(5):60-64.

    ZHANG Chenghang,ZHENG Jieming,ZHANG Yuzhuo,et al. Evaluation method of coal seam floor water inrush based on Surfer and its application[J]. Mining Safety & Environmental Protection,2020,47(5):60-64.
    [8] 周航,廖昕,陈仕阔,等. 基于组合赋权和未确知测度的深埋隧道岩爆危险性评价−以川藏交通廊道桑珠岭隧道为例[J]. 地球科学,2022,47(6):2130-2148.

    ZHOU Hang,LIAO Xin,CHEN Shikuo,et al. Rockburst risk assessment of deep lying tunnels based on combination weight and unascertained measure theory:a case study of Sangzhuling tunnel on Sichuan-Tibet traffic torridor[J]. Earth Science,2022,47(6):2130-2148.
    [9] 苏生瑞,周阳,周泽华,等. 基于EW−AHP和未确知测 度理论的崩塌危险性评价[J]. 工程地质学报,2019,27(3):577-584.

    SU Shengrui,ZHOU Yang,ZHOU Zehua,et al. Hazard assessment of collapse using EW-AHP and unascertained measure theory[J]. Journal of Engineering Geology,2019,27(3):577-584.
    [10] 郑伯坤,尹旭岩,黄腾龙,等. 基于未确知测度理论的三山岛金矿充填工艺方案优选[J]. 矿业研究与开发,2020,40(2):13-18.

    ZHENG Bokun,YIN Xuyan,HUANG Tenglong,et al. Optimization of filling process scheme for Sanshandao Gold Mine based on unascertained measure theory[J]. Mining Research and Development,2020,40(2):13-18.
    [11] SAATY T L,VARGAS L. Estimating technological coefficients by the analytic hierarchy process[J]. Socio-Economic Planning Sciences,1979,13(6):333-336. doi: 10.1016/0038-0121(79)90015-6
    [12] 王心义,姚孟杰,张建国,等. 基于改进AHP法与模糊可变集理论的煤层底板突水危险性评价[J]. 采矿与安全工程学报,2019,36(3):558-565.

    WANG Xinyi,YAO Mengjie,ZHANG Jianguo,et al. Evaluation of water bursting in coal seam floor based on improved AHP and fuzzy variable set theory[J]. Journal of Mining & Safety Engineering,2019,36(3):558-565.
    [13] 鲁海峰,孟祥帅,张元,等. 采场底板层状结构关键层隔水性能力学分析[J]. 中国矿业大学学报,2020,49(6):1057-1066.

    LU Haifeng,MENG Xiangshuai,ZHANG Yuan,et al. Mechanical analysis of water barrier performance of floor layered structure key stratum on coal face[J]. Journal of China University of Mining & Technology,2020,49(6):1057-1066.
    [14] 翟强,顾伟红,赵映璎. 基于未确知测度理论的隧道施工瓦斯灾害风险评价[J]. 铁道科学与工程学报,2021,18(3):803-812.

    ZHAI Qiang,GU Weihong,ZHAO Yingying. Risk assessment of gas disaster in tunnel construction based on unascertained measurement theory[J]. Journal of Railway Science and Engineering,2021,18(3):803-812.
    [15] LIU Weitao,HAN Mengke,MENG Xiangxi,et al. Mine water inrush risk assessment evaluation based on the GIS and combination weight-cloud model:a case study[J]. ACS Omega,2021,6(48):32671-32681. doi: 10.1021/acsomega.1c04357
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  133
  • HTML全文浏览量:  33
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-11
  • 修回日期:  2022-07-30
  • 网络出版日期:  2022-06-07

目录

    /

    返回文章
    返回