留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

坚硬厚煤层大采高综采支架分段调阻煤壁弱化研究

吉磊

吉磊. 坚硬厚煤层大采高综采支架分段调阻煤壁弱化研究[J]. 工矿自动化,2022,48(3):5-10.  doi: 10.13272/j.issn.1671-251x.2022010006
引用本文: 吉磊. 坚硬厚煤层大采高综采支架分段调阻煤壁弱化研究[J]. 工矿自动化,2022,48(3):5-10.  doi: 10.13272/j.issn.1671-251x.2022010006
JI Lei. Study on the weakening of coal wall with section resistance adjustment of fully mechanized support in hard thick coal seam with large mining height[J]. Journal of Mine Automation,2022,48(3):5-10.  doi: 10.13272/j.issn.1671-251x.2022010006
Citation: JI Lei. Study on the weakening of coal wall with section resistance adjustment of fully mechanized support in hard thick coal seam with large mining height[J]. Journal of Mine Automation,2022,48(3):5-10.  doi: 10.13272/j.issn.1671-251x.2022010006

坚硬厚煤层大采高综采支架分段调阻煤壁弱化研究

doi: 10.13272/j.issn.1671-251x.2022010006
基金项目: 山西省面上青年项目(201901D211038);山西省高等学校科技创新项目(2019L0347)。
详细信息
    作者简介:

    吉磊(1984-),男,山西临汾人,工程师,主要研究方向为煤矿机电与安全技术,E-mail:cklw2022@126.com

  • 中图分类号: TD823

Study on the weakening of coal wall with section resistance adjustment of fully mechanized support in hard thick coal seam with large mining height

  • 摘要: 不同回采阶段作用于煤壁−支架上的载荷变化较大,煤壁低效截割是支架阻力与回采阶段不匹配、矿山压力不能有效破煤的结果。支架分段调阻技术在满足不同回采阶段(周期来压前、正常回采、周期来压后)顶板安全控制的要求下,调整支架工作阻力改变煤壁上的载荷用于压裂破煤,能有效解决厚硬煤壁弱化的难题。以杨伙盘煤矿1102综采工作面为工程背景,研究了与回采阶段匹配的厚硬煤层支架分段调阻技术。模拟分析结果表明:① 在工作面正常回采阶段和来压阶段,煤壁测线上各点支承压力峰值、影响范围随液压支架初撑力增大而减小;相同支架初撑力作用下,来压阶段煤壁上支承压力峰值和影响范围均大于正常回采阶段。② 当液压支架初撑力由2 000 kN增至8 000 kN时,煤壁水平位移值在来压阶段减小了17 mm,在正常回采阶段减小了7.5 mm,说明降低支架初撑力有利于坚硬煤壁弱化。③ 不同回采阶段,围岩塑性区的破坏程度随液压支架初撑力的增加而降低,说明煤壁破坏程度减小。④ 正常回采阶段支架阻力为6 000~8 000 kN、周期来压后支架阻力为4 000~6 000 kN、周期来压前支架阻力大于8 000 kN,可以保证顶板安全和厚硬煤壁高效截割。现场应用表明:① 液压支架在115个工作循环中增阻状态占统计循环数的64.8%(1次增阻型占75.50%,2次增阻为20.16%,多次增阻为4.34%);支架活柱伸缩量在0~3%的比率为90%,说明现场生产中液压支架运转和控顶能力良好。② 分段调整液压支架工作支护阻力后,在有效控顶前提下,采煤机平均割煤时间降低至1.8 h,降低了21.7%,有效实现煤壁弱化,提高了割煤效率。

     

  • 图  1  数值计算模型

    Figure  1.  Numerical calculation model

    图  2  支架初撑力与超前支承压力峰值及影响范围关系

    Figure  2.  The relationship between the support initial support and the front abutment pressure and the influence range

    图  3  液压支架初撑力与煤壁位移关系

    Figure  3.  The relationship between the support initial support and the coal wall displacement

    图  4  正常回采阶段工作面围岩塑性区分布

    Figure  4.  Surrounding rock plastic zone distribution of working face during normal mining stage

    图  5  来压阶段工作面围岩塑性区分布

    Figure  5.  Surrounding rock plastic zone distribution of working face during pressure stage

    图  6  液压支架工作阻力与围岩塑性区分布关系

    Figure  6.  The relationship between the working resistance of hydrauhic support and surrounding rock plastic zone distribution

    表  1  1102综采工作面采煤机开机率实测结果统计

    Table  1.   Statistics of the actual measurement results of the shearer operating rate in the 1102 fully mechanized working face

    序号割煤速度/
    (m·min−1)
    开机率/%影响因素操作
    人数
    11.530采煤机故障2
    21.845采煤机故障,端头进刀停机2
    31.124刮板输送机的开停影响;刮板输
    送机上大块煤太多,采煤机不能移动
    3
    41.643端头进刀工序复杂,早班采煤机
    维修时间较长
    3
    51.9482
    61.7452
    71.225采煤机过载2
    下载: 导出CSV

    表  2  岩块力学参数

    Table  2.   Mechanical parameters of rock blocks

    岩性密度/
    (kg·m−3
    剪切模量/
    MPa
    体积模量/
    MPa
    黏聚力/
    MPa
    内摩擦角/
    (°)
    粉砂岩2 4752 3005 8001.6035
    泥岩1 8202 6501.2026
    砂质泥岩2 2902 1002 6001.0028
    2号煤层1 4001 9602 0000.8045
    中砂岩2 2902 2002 6001.3028
    下载: 导出CSV

    表  4  工作面液压支架支护强度与采煤机割煤时间

    Table  4.   Support strength of hydraulic support in working face and coal cutting time of shearer

    序号推进
    距离/m
    支架平均
    支护阻力/kN
    采煤机
    割煤时间/h
    1 2.2 6 302.16 1.6
    2 5.4 7 184.09 1.7
    3 7.0 7 802.72 1.8
    4 10.1 8 253.89 2.0
    5 12.7 8 685.05 2.1
    6 14.6 9 213.41 1.7
    下载: 导出CSV
  • [1] 王金华. 特厚硬煤层综采技术应用现状及发展趋势[J]. 煤炭科学技术,2014,42(1):1-4.

    WANG Jinhua. Present status and development tendency of fully-mechanized coal mining technology in ultra thick hard seam[J]. Coal Science and Technology,2014,42(1):1-4.
    [2] 宋高峰,王振伟,钟晓勇. 坚硬顶板破断冲击机理及支架与围岩“收敛−约束”耦合机制研究[J]. 采矿与安全工程学报,2020,37(5):951-959.

    SONG Gaofeng,WANG Zhenwei,ZHONG Xiaoyong. Dynamic impact mechanism of hard roof strata and coupling mechanism of " constrain-convergence" between support and surrounding rock[J]. Journal of Mining & Safety Engineering,2020,37(5):951-959.
    [3] 黄庆享,徐璟,杜君武. 浅埋煤层大采高工作面支架合理初撑力确定[J]. 采矿与安全工程学报,2019,36(3):491-496.

    HUANG Qingxiang,XU Jing,DU Junwu. Determination of support setting load of large-mining-height long wall face in shallow coal seam[J]. Journal of Mining & Safety Engineering,2019,36(3):491-496.
    [4] 徐刚,张春会,张振金. 综放工作面顶板缓慢活动支架增阻预测模型[J]. 煤炭学报,2020,45(11):3678-3687.

    XU Gang,ZHANG Chunhui,ZHANG Zhenjin. Prediction model for increasing resistance of hydraulic support due to slow motion of the roof in mechanized mining working face[J]. Journal of China Coal Society,2020,45(11):3678-3687.
    [5] 李海涛. 煤体强度对煤壁稳定性的影响研究[J]. 煤炭工程,2020,52(8):118-122.

    LI Haitao. Effect of coal strenth on coal wall stability[J]. Coal Engineering,2020,52(8):118-122.
    [6] 张金虎,李明忠,杨正凯,等. 超大采高综采工作面煤壁片帮机理及多维防护措施研究[J]. 采矿与安全工程学报,2021,38(3):487-495.

    ZHANG Jinhu,LI Mingzhong,YANG Zhengkai,et al. Mechanism of coal wall spalling in super high fully mechanized face and its multi-dimensional protection measures[J]. Journal of Mining & Safety Engineering,2021,38(3):487-495.
    [7] 王家臣,王兆会,孔德中. 硬煤工作面煤壁破坏与防治机理[J]. 煤炭学报,2015,40(10):2243-2250.

    WANG Jiachen,WANG Zhaohui,KONG Dezhong. Failure and prevention mechanism of coal wall in hard coal seam[J]. Journal of China Coal Society,2015,40(10):2243-2250.
    [8] 曹志强. 近距离煤层综采工作面大工作阻力支架适应性分析[J]. 煤炭工程, 2019, 51(增刊2): 100-102.

    CAO Zhiqiang. Adaptability analysis of large working resistance support in fully mechanized mining face of close coal seams[J]. Coal Engineering, 51(S2): 100-102.
    [9] 刘强,苏学贵,郝佩,等. 基于大采高综采支架工况的煤壁片帮控制研究[J]. 矿业研究与开发,2018,38(11):61-65.

    LIU Qiang,SU Xuegui,HAO Pei,et al. Study on the control of rib fall of coal wall based on the working state of large mining hydraulic support[J]. Mining Research and Development,2018,38(11):61-65.
    [10] 刘闯,李化敏,张群磊. 大采高液压支架初撑力与额定工作阻力合理比值研究[J]. 采矿与安全工程学报,2018,35(4):725-733.

    LIU Chuang,LI Huamin,ZHANG Qunlei. Research on reasonable ratio of setting load and yield load of shield in large mining height coal mine[J]. Journal of Mining & Safety Engineering,2018,35(4):725-733.
    [11] 许海涛. 综采工作面支架阻力分布特征及适应性研究[J]. 山西能源学院学报,2017,30(4):12-13. doi: 10.3969/j.issn.1008-8881.2017.04.006

    XU Haitao. Research on resistance distribution characteristics and adaptability of support in fully mechanized mining face[J]. Journal of Shanxi Institute of Energy,2017,30(4):12-13. doi: 10.3969/j.issn.1008-8881.2017.04.006
    [12] 方新秋,何杰,李海潮. 软煤综放面煤壁片帮机理及防治研究[J]. 中国矿业大学学报,2009,38(5):640-644. doi: 10.3321/j.issn:1000-1964.2009.05.007

    FANG Xinqiu,HE Jie,LI Haichao. A study of the rib fall mechanism in soft coal and its control at a fully-mechanized top-coal caving face[J]. Journal of China University of Mining & Technology,2009,38(5):640-644. doi: 10.3321/j.issn:1000-1964.2009.05.007
    [13] 王兆会,王家臣,杨毅,等. 综采工作面煤壁稳定性的支架刚度效应分析[J]. 中国矿业大学学报,2019,48(2):258-267.

    WANG Zhaohui,WANG Jiachen,YANG Yi,et al. Mechanical relation between support stiffness and longwall face stability within fully-mechanized mining faces[J]. Journal of China University of Mining & Technology,2019,48(2):258-267.
    [14] 任艳芳. 综采工作面液压支架支护能力的分析与评价方法[J]. 采矿与岩层控制工程学报,2020,2(3):83-89.

    REN Yanfang. Analysis and evaluation method for supporting ability of supports in coal mine working face[J]. Journal of Mining and Strata Control Engineering,2020,2(3):83-89.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  161
  • HTML全文浏览量:  26
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-04
  • 修回日期:  2022-03-05
  • 网络出版日期:  2022-03-05

目录

    /

    返回文章
    返回