留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

坚硬顶板强冲击工作面多巷交叉区域防冲技术

马宏源 潘俊锋 席国军 焦彪 刘少虹 邬建宏

马宏源,潘俊锋,席国军,等. 坚硬顶板强冲击工作面多巷交叉区域防冲技术[J]. 工矿自动化,2022,48(4):121-127.  doi: 10.13272/j.issn.1671-251x.2021120039
引用本文: 马宏源,潘俊锋,席国军,等. 坚硬顶板强冲击工作面多巷交叉区域防冲技术[J]. 工矿自动化,2022,48(4):121-127.  doi: 10.13272/j.issn.1671-251x.2021120039
MA Hongyuan, PAN Junfeng, XI Guojun, et al. Rock burst prevention technology in multi-roadway intersection area of hard roof strong impact working face[J]. Journal of Mine Automation,2022,48(4):121-127.  doi: 10.13272/j.issn.1671-251x.2021120039
Citation: MA Hongyuan, PAN Junfeng, XI Guojun, et al. Rock burst prevention technology in multi-roadway intersection area of hard roof strong impact working face[J]. Journal of Mine Automation,2022,48(4):121-127.  doi: 10.13272/j.issn.1671-251x.2021120039

坚硬顶板强冲击工作面多巷交叉区域防冲技术

doi: 10.13272/j.issn.1671-251x.2021120039
基金项目: 国家自然科学基金面上项目(52174186)。
详细信息
    作者简介:

    马宏源(1998-),男,山东枣庄人,硕士研究生,主要研究方向为冲击地压理论与防治技术,E-mail:mhy2021521@163.com

  • 中图分类号: TD324

Rock burst prevention technology in multi-roadway intersection area of hard roof strong impact working face

  • 摘要: 为保障坚硬顶板条件下强冲击工作面回采过程中多巷交叉区域安全性,以陕西彬长胡家河矿业有限公司401111工作面回采末期为工程背景,采用理论分析、现场监测的方法对末采期间工作面冲击危险区域进行等级划分,分析了导致冲击危险性升高的动静载荷影响因素,并对比了正常回采期间与末采期间动静载荷监测情况。结果表明:401111工作面开采煤层具有强冲击倾向性,在坚硬顶板条件下,本工作面采空区、相邻采空区和多巷交叉区域提供了静载荷,采空区上覆坚硬顶板悬顶和垮断及多巷交叉区域弹性能瞬时释放提供了动载荷,动静载荷共同作用导致401111工作面回采末期冲击危险性升高,且回风巷侧多巷交叉区域冲击危险性高于运输巷侧。采用冲击地压分源防治思想:针对上覆坚硬顶板,利用顶板预裂爆破技术,缩短顶板垮落步距,降低顶板大面积悬顶和垮断产生的动载扰动影响;针对巷道帮部和底板,采用大孔径钻孔卸压,减少静载荷积聚,降低围岩受载程度。同时对巷道顶板实施锚杆+钢带网与锚索联合支护方式,对巷道帮部采用锚索+钢筋梯网支护方式,提高围岩抗冲击能力。采用基于卸压和联合支护的防冲技术后,微震事件大幅降低,表明煤岩体破裂程度较低,完整性较好,保证了工作面回采安全性。

     

  • 图  1  401111工作面平面

    Figure  1.  401111 working face plane

    图  2  401111工作面综合地质柱状图

    Figure  2.  Comprehensive geological histogram of 401111 working face

    图  3  微震事件统计

    Figure  3.  Microseismic events statistics

    图  4  三次方微震事件分布

    Figure  4.  Distribution of cubic microseismic events

    图  5  地音监测时序曲线

    Figure  5.  Time sequence curve of ground sound monitoring

    图  6  应力监测曲线

    Figure  6.  Stress monitoring curve

    图  7  预裂爆破孔和大孔径钻孔平面布置

    Figure  7.  Layout of pre-split blasting hole and large-diameter borehole

    图  8  顶板预裂爆破孔布置

    Figure  8.  Layout of roof pre-split blasting hole

    图  9  帮部大孔径钻孔布置

    Figure  9.  Layout of large-diameter borehole in two sides

    图  10  底板大孔径钻孔布置

    Figure  10.  Layout of large-diameter borehole in floor

    图  11  防冲技术实施前后微震事件统计

    Figure  11.  Statistics of microseismic events before and after the implementation of rock burst prevention technology

    表  1  4号煤层冲击倾向性鉴定结果

    Table  1.   Rock burst tendency evaluation results of No.4 coal seam

    煤层动态破坏
    时间/ms
    弹性能
    指数
    冲击能量
    指数
    抗压强度/
    MPa
    冲击倾向性
    上分层39.806.497.7324.27强冲击倾向性
    下分层34.404.4512.5724.35强冲击倾向性
    下载: 导出CSV

    表  2  冲击危险等级划分标准

    Table  2.   Classification standard of rock burst hazard level

    冲击危险指数α冲击危险等级
    α≤7无冲击危险
    7<α≤14弱冲击危险
    14<α≤21中等冲击危险
    α>21强冲击危险
    下载: 导出CSV

    表  3  401111工作面回采末期巷道冲击危险区域等级划分

    Table  3.   Classification of rock burst hazard area level of roadway at the end of mining in 401111 working face

    位置冲击危险指数集中动静载荷
    影响因素
    冲击危险等级
    运输巷及运输措施巷9周期来压、巷道交叉布局弱冲击危险
    回风巷、回风联络巷及
    回风措施巷
    24周期来压、巷道交叉布局、
    相邻采空区、煤柱宽度
    强冲击危险
    下载: 导出CSV
  • [1] 何满潮,谢和平,彭苏萍,等. 深部开采岩体力学研究[J]. 岩石力学与工程学报,2005,24(16):2803-2813. doi: 10.3321/j.issn:1000-6915.2005.16.001

    HE Manchao,XIE Heping,PENG Suping,et al. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(16):2803-2813. doi: 10.3321/j.issn:1000-6915.2005.16.001
    [2] 谢和平,周宏伟,薛东杰,等. 煤炭深部开采与极限开采深度的研究与思考[J]. 煤炭学报,2012,37(4):535-542.

    XIE Heping,ZHOU Hongwei,XUE Dongjie,et al. Research and consideration on deep coal mining and critical mining depth[J]. Journal of China Coal Society,2012,37(4):535-542.
    [3] 姜福兴,舒凑先,王存文. 基于应力叠加回采工作面冲击危险性评价[J]. 岩石力学与工程学报,2015,34(12):2428-2435.

    JIANG Fuxing,SHU Couxian,WANG Cunwen. Impact risk appraisal of stope working faces based on stress superimposition[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(12):2428-2435.
    [4] 齐庆新,李一哲,赵善坤,等. 我国煤矿冲击地压发展70年:理论与技术体系的建立与思考[J]. 煤炭科学技术,2019,47(9):1-40.

    QI Qingxin,LI Yizhe,ZHAO Shankun,et al. Seventy years development of coal mine rockburst in China:establishment and consideration of theory and technology system[J]. Coal Science and Technology,2019,47(9):1-40.
    [5] 吴拥政,付玉凯,何杰,等. 深部冲击地压巷道“卸压−支护−防护”协同防控原理与技术[J]. 煤炭学报,2021,46(1):132-144.

    WU Yongzheng,FU Yukai,HE Jie,et al. Principle and technology of "pressure relief-support-protection" collaborative prevention and control in deep rock burst roadway[J]. Journal of China Coal Society,2021,46(1):132-144.
    [6] 卜庆为,辛亚军,王超,等. 交错巷道巷间围岩承载结构稳定性分析[J]. 煤炭学报,2018,43(7):1866-1877.

    BU Qingwei,XIN Yajun,WANG Chao,et al. Stability analysis on bearing structure in the surrounding rock between staggered roadways[J]. Journal of China Coal Society,2018,43(7):1866-1877.
    [7] 孙光中,王国际,郭军杰,等. 采动影响下巷道群稳定性数值分析研究[J]. 地下空间与工程学报,2009,5(增刊1):1412-1417.

    SUN Guangzhong,WANG Guoji,GUO Junjie,et al. Numerical simulation and analysis on stability of roadway group affected by mining action[J]. Chinese Journal of Underground Space and Engineering,2009,5(S1):1412-1417.
    [8] 王光明,姚荐达,王勇,等. 动载扰动下深部巷道群的力学响应数值分析[J]. 煤炭技术,2014,33(4):98-100.

    WANG Guangming,YAO Jianda,WANG Yong,et al. Numerical analysis of mechanical response of deep roadway group under dynamic disturbance[J]. Coal Technology,2014,33(4):98-100.
    [9] 郑兵亮. 强动压大变形巷道群围岩加固技术研究[J]. 煤炭科学技术,2015,43(11):27-31,37.

    ZHENG Bingliang. Study on surrounding rock reinforcement technology of strong mine dynamic pressure large deformation roadway group[J]. Coal Science and Technology,2015,43(11):27-31,37.
    [10] 卢兴利,刘泉声,苏培芳,等. 潘二矿松软破碎巷道群大变形失稳机理及支护技术优化研究[J]. 岩土工程学报,2013,35(增刊1):97-102.

    LU Xingli,LIU Quansheng,SU Peifang,et al. Instability mechanism and bracing optimization for roadway groups with soft and fractured surrounding rock in Pan'er Coal Mine[J]. Chinese Journal of Geotechnical Engineering,2013,35(S1):97-102.
    [11] 苏学贵,宋选民,原鸿鹄,等. 受上覆采空区影响的巷道群稳定性控制研究[J]. 采矿与安全工程学报,2016,33(3):415-422.

    SU Xuegui,SONG Xuanmin,YUAN Honghu,et al. Stability control of the roadway group under the influence of overlying goaf[J]. Journal of Mining & Safety Engineering,2016,33(3):415-422.
    [12] 潘俊锋,刘少虹,秦子晗,等. 深部盘区巷道群集中静载荷型冲击地压机理与防治[J]. 煤炭学报,2018,43( 10):2679-2686.

    PAN Junfeng,LIU Shaohong,QIN Zihan,et al. Mechanism and prevention of concentrated static load type rock burst of roadway group in deep mining area[J]. Journal of China Coal Society,2018,43( 10):2679-2686.
    [13] 刘宏军. 深部动压条件下密集巷道群冲击地压防治技术研究[J]. 中国煤炭,2015,41(10):60-63. doi: 10.3969/j.issn.1006-530X.2015.10.014

    LIU Hongjun. Research on control technique of rock burst in serried roadway groups under deep mining pressure[J]. China Coal,2015,41(10):60-63. doi: 10.3969/j.issn.1006-530X.2015.10.014
    [14] 史俊伟,刘军. 巷道群冲击地压数值模拟研究[J]. 煤炭工程,2011,43( 7):76-78. doi: 10.3969/j.issn.1671-0959.2011.07.030

    SHI Junwei,LIU Jun. Numerical simulation of rockburst in roadway group[J]. Coal Engineering,2011,43( 7):76-78. doi: 10.3969/j.issn.1671-0959.2011.07.030
    [15] 潘俊锋. 煤矿冲击地压启动理论及其成套技术体系研究[J]. 煤炭学报,2019,44(1):173-182.

    PAN Junfeng. Theory of rockburst start-up and its complete technology system[J]. Journal of China Coal Society,2019,44(1):173-182.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  34
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-11
  • 修回日期:  2022-04-13
  • 网络出版日期:  2022-03-23

目录

    /

    返回文章
    返回