留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤矿护盾式掘进机器人系统精确定位研究

马宏伟 杨金科 毛清华 汪强

马宏伟,杨金科,毛清华,等. 煤矿护盾式掘进机器人系统精确定位研究[J]. 工矿自动化,2022,48(3):63-70.  doi: 10.13272/j.issn.1671-251x.2021070082
引用本文: 马宏伟,杨金科,毛清华,等. 煤矿护盾式掘进机器人系统精确定位研究[J]. 工矿自动化,2022,48(3):63-70.  doi: 10.13272/j.issn.1671-251x.2021070082
MA Hongwei, YANG Jinke, MAO Qinghua, et al. Research on precise positioning of shield roadheader robot system in coal mine[J]. Journal of Mine Automation,2022,48(3):63-70.  doi: 10.13272/j.issn.1671-251x.2021070082
Citation: MA Hongwei, YANG Jinke, MAO Qinghua, et al. Research on precise positioning of shield roadheader robot system in coal mine[J]. Journal of Mine Automation,2022,48(3):63-70.  doi: 10.13272/j.issn.1671-251x.2021070082

煤矿护盾式掘进机器人系统精确定位研究

doi: 10.13272/j.issn.1671-251x.2021070082
基金项目: 国家自然科学基金面上项目(52174150);陕西省创新人才计划项目(2018TD-032)。
详细信息
    作者简介:

    马宏伟(1957-),男,陕西兴平人,教授,博士,博士研究生导师,主要研究方向为煤矿智能化、智能检测与控制、机器人技术、现代无损检测与评价等,E-mail:mahw@xust.edu.cn

    通讯作者:

    杨金科(1995-),男,宁夏固原人,硕士研究生,主要研究方向为智能检测与控制,E-mail:1649757234@qq.com

  • 中图分类号: TD421

Research on precise positioning of shield roadheader robot system in coal mine

  • 摘要: 目前煤矿井下掘进装备定位方法大多采用机器视觉、里程计、全站仪等单一的辅助测量方式与惯导组合测量来抑制惯导解算随时间所产生的位置累计误差,但是单一的辅助测量方式易受井下环境的影响,位置测量存在一定的误差,从而导致与惯导组合测量方法的精度降低。针对上述问题,以煤矿护盾式掘进机器人系统为研究对象,提出了一种捷联惯导+数字全站仪+位移传感器的组合定位方法。首先采用捷联惯导解算出掘进机器人的位置与姿态角参数;然后利用数字全站仪测量的掘进机器人位置信息与位移传感器推算的掘进机器人位置信息对捷联惯导解算出的位置信息进行反馈修正,以减小惯导随时间所产生的位置累计误差;最后利用基于联邦滤波器的多信息融合算法将捷联惯导解算出的位置及姿态角信息、全站仪测量得到的位置信息及位移传感器推算得到的位置信息进行融合,从而得到掘进机器人准确的位姿信息。仿真及工业性试验结果表明:该组合定位方法能够很好地抑制纯惯导位置解算误差累计,实现煤矿护盾式掘进机器人的精确定位,x轴和y轴方向上的位置误差分别控制在±0.03 m和±0.02 m,满足井下掘进工作面要求。

     

  • 图  1  煤矿护盾式掘进机器人系统构成

    Figure  1.  Structure of coal mine shield roadheader robot system

    图  2  组合定位方法组成

    1−后视棱镜;2−数字全站仪;3−临时支护机器人Ⅱ;4−推移油缸;5−捷联惯导;6−前视棱镜;7−临时支护机器人Ⅰ;8−截割机器人;9−横滚角;10−航向角;11−俯仰角。

    Figure  2.  Composition of combination positioning method

    图  3  组合定位方法原理

    Figure  3.  Principle of combined positioning method

    图  4  基于联邦滤波器的多信息融合原理

    Figure  4.  Multi-information fusion principle based on federated filter

    图  5  组合定位方法下掘进机器人静态姿态角误差

    Figure  5.  Static attitude angle error of roadheader robot under combined positioning method

    图  6  组合定位方法下掘进机器人动态姿态角误差

    Figure  6.  Dynamic attitude angle error of roadheader robot under combined positioning method

    图  7  组合定位方法下掘进机器人位置解算误差

    Figure  7.  Position calculation error of roadheader robot under combined positioning method

    图  8  纯惯导定位位置解算误差

    Figure  8.  Position calculation error of pure inertial navigation positioning

    图  9  静止状态时姿态角变化趋势

    Figure  9.  Change trend of attitude angle in static state

    图  10  掘进状态时姿态角变化趋势

    Figure  10.  Change trend of attitude angle in driving state

    图  11  组合定位方法下煤矿护盾式掘进机器人位置曲线

    Figure  11.  Position curves of coal mine shield roadheader robot under combined positioning method

    图  12  组合定位方法下煤矿护盾式掘进机器人位置误差曲线

    Figure  12.  Position error curve of coal mine shield roadheader robot under combined positioning method

  • [1] 马宏伟,王鹏,张旭辉,等. 煤矿巷道智能掘进机器人系统关键技术研究[J]. 西安科技大学学报,2020,40( 5):751-759.

    MA Hongwei,WANG Peng,ZHANG Xuhui,et al. Research on key technology of intelligent tunneling robotic system in coal mine[J]. Journal of Xi'an University of Science and Technology,2020,40( 5):751-759.
    [2] 王步康. 煤矿巷道掘进技术与装备的现状及趋势分析[J]. 煤炭科学技术,2020,48( 11):6-16.

    WANG Bukang. Current status and trend analysis of roadway driving technology and equipment in coal mine[J]. Coal Science and Technology,2020,48( 11):6-16.
    [3] 张东宝. 煤巷智能快速掘进技术发展现状与关键技术[J]. 煤炭工程,2018,50(5):56-59.

    ZHANG Dongbao. Development status and key technology of intelligent rapid driving technology in coal seam roadway[J]. Coal Engineering,2018,50(5):56-59.
    [4] 朱信平. 基于全站仪的掘进机机身位姿参数测量方法[J]. 煤炭工程,2011,43(6):113-115. doi: 10.3969/j.issn.1671-0959.2011.06.044

    ZHU Xinping. Position parameter measuring method of mine roadheader body based on total station[J]. Coal Engineering,2011,43(6):113-115. doi: 10.3969/j.issn.1671-0959.2011.06.044
    [5] 解则晓,陈文柱,迟书凯,等. 基于结构光视觉引导的工业机器人定位系统[J]. 光学学报,2016,36( 10):162-169.

    XIE Zexiao,CHEN Wenzhu,CHI Shukai,et al. Industrial robot positioning system based on the guidance of the structured-light vision[J]. Acta Optica Sinica,2016,36( 10):162-169.
    [6] 符世琛,李一鸣,杨健健,等. 基于超宽带技术的掘进机自主定位定向方法研究[J]. 煤炭学报,2015,40(11):107-114.

    FU Shichen,LI Yiming,YANG Jianjian,et al. Research on autonomous positioning and orientation method of roadheader based on ultra wide-band technology[J]. Journal of China Coal Society,2015,40(11):107-114.
    [7] 谢义方. 脉冲超宽带通信与测距技术初步研究[J]. 飞行器测控学报,2013,32(6):496-500.

    XIE Yifang. A preliminary study on UWB communication and ranging technology[J]. Journal of Spacecraft TT & C Technology,2013,32(6):496-500.
    [8] 陶云飞,杨健健,李嘉赓,等. 基于惯性导航技术的掘进机位姿测量系统研究[J]. 煤炭技术,2017,36(1):235-237.

    TAO Yunfei,YANG Jianjian,LI Jiageng,et al. Research on position and attitude measurement system of roadheader based on inertial navigation technology[J]. Coal Technology,2017,36(1):235-237.
    [9] 黄东,杨凌辉,罗文,等. 基于视觉/惯导的掘进机实时位姿测量方法研究[J]. 激光技术,2017,41(1):19-23. doi: 10.7510/jgjs.issn.1001-3806.2017.01.005

    HUANG Dong,YANG Linghui,LUO Wen,et al. Study on measurement method of real-time position and attitude of roadheader based on vision/inertial navigation system[J]. Laser Technology,2017,41(1):19-23. doi: 10.7510/jgjs.issn.1001-3806.2017.01.005
    [10] 于永军,徐锦法,张梁,等. 惯导/双目视觉位姿估计算法研究[J]. 仪器仪表学报,2014,35( 10):2170-2176.

    YU Yongjun,XU Jinfa,ZHANG Liang,et al. Research on SINS/binocular vision integrated position and attitude estimation algorithm[J]. Chinese Journal of Scientific Instrument,2014,35( 10):2170-2176.
    [11] 毛清华,张旭辉,马宏伟,等. 多传感器信息的悬臂式掘进机空间位姿监测系统研究[J]. 煤炭科学技术,2018,46( 12):41-47.

    MAO Qinghua,ZHANG Xuhui,MA Hongwei,et al. Study on spatial position and posture monitoring system of boom-type roadheader based on multi sensor information[J]. Coal Science and Technology,2018,46( 12):41-47.
    [12] 马宏伟,张璞,毛清华,等. 基于捷联惯导和里程计的井下机器人定位方法研究[J]. 工矿自动化,2019,45(4):38-45.

    MA Hongwei,ZHANG Pu,MAO Qinghua,et al. Research on positioning method of underground robot based on strapdown inertial navigation and odometer[J]. Industry and Mine Automation,2019,45(4):38-45.
    [13] 马宏伟, 毛金根, 毛清华, 等. 基于惯导/全站仪组合的掘进机自主定位定向方法[J/OL]. 煤炭科学技术: 1-7. [2021-07-21]. http://kns.cnki.net/kcms/detail/11.2402.TD.20210512.1417.006.html.

    MA Hongwei, MAO Jingen, MAO Qinghua, et al. Autonomous positioning and orientation method of roadheader based on inertial navigation/total station combination [J/OL]. Coal Science and Technology: 1-7. [2021-07-21]. http://kns.cnki.net/kcms/detail/11.2402.TD.20210512.1417.006.html.
    [14] 张旭辉,刘博兴,张超,等. 掘进机全站仪与捷联惯导组合定位方法[J]. 工矿自动化,2020,46(9):1-7.

    ZHANG Xuhui,LIU Boxing,ZHANG Chao,et al. Roadheader positioning method combining total station and strapdown inertial navigation system[J]. Industry and Mine Automation,2020,46(9):1-7.
    [15] 秦永元. 惯性导航[M]. 北京: 科学出版社, 2006.

    QIN Yongyuan. Inertial navigation[M]. Beijing: Science Press, 2006.
    [16] 秦永元, 张洪钺, 汪叔华. 卡尔曼滤波与组合导航原理[M]. 3 版. 西安: 西北工业大学出版社, 2015.

    QIN Yongyuan, ZHANG Hongyue, WANG Shuhua. Kalman filter and integrated navigation principle [M]. 3rd Edition. Xi'an: Northwestern Polytechnical University Press, 2015.
  • 加载中
图(12)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  40
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-29
  • 录用日期:  2022-03-05
  • 修回日期:  2022-01-20
  • 网络出版日期:  2022-03-11

目录

    /

    返回文章
    返回