留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于音频识别的采煤机滚筒载荷识别方法

庄德玉

庄德玉. 基于音频识别的采煤机滚筒载荷识别方法[J]. 工矿自动化,2022,48(1):16-20.  doi: 10.13272/j.issn.1671-251x.2021070027
引用本文: 庄德玉. 基于音频识别的采煤机滚筒载荷识别方法[J]. 工矿自动化,2022,48(1):16-20.  doi: 10.13272/j.issn.1671-251x.2021070027
ZHUANG Deyu. Shearer drum load identification method based on audio recognition[J]. Industry and Mine Automation,2022,48(1):16-20.  doi: 10.13272/j.issn.1671-251x.2021070027
Citation: ZHUANG Deyu. Shearer drum load identification method based on audio recognition[J]. Industry and Mine Automation,2022,48(1):16-20.  doi: 10.13272/j.issn.1671-251x.2021070027

基于音频识别的采煤机滚筒载荷识别方法

doi: 10.13272/j.issn.1671-251x.2021070027
基金项目: 天地科技股份有限公司科技创新创业资金专项重点项目(2020-TD-ZD005)。
详细信息
    作者简介:

    庄德玉(1984—),男,安徽宿州人,副研究员,硕士,研究方向为采煤机电控技术,E-mail: 13918575648@163.com

  • 中图分类号: TD632

Shearer drum load identification method based on audio recognition

  • 摘要: 针对现有采煤机滚筒载荷识别方法相关算法实施难度大、工程实现方式复杂、应用难度高等问题,通过分析采煤机工作时音频信号的特征,提出一种基于音频识别的采煤机滚筒载荷识别方法。为确保每个分析周期内的音频信号具有同一运行标准下的负载工况,将截割电流与牵引速度作为变量引入到动态能量计算中,采用动态能量归一化算法(DENA)对采煤机原始音频信号进行归一化处理;将归一化后的信号与标准工况库中的信号进行对比分析,通过最大相异系数判断两者之间的差异性,从而确定滚筒载荷特征,实现滚筒载荷识别判断。试验结果表明:DENA可有效抑制音频信号中的噪声能量,提升音频信号中关键特征值的分辨率,采煤机在截割煤、岩时的音频信号特征参数界限明显,未出现交叉混叠现象;在理想情况下,即最大相异系数小于0.189时,总的煤岩界面识别率可达到78.6%。

     

  • 图  1  基于音频识别的采煤机滚筒载荷识别方法

    Figure  1.  Identification method of shearer drum load based on audio recognition

    图  2  采煤机滚筒受力分析

    Figure  2.  Force analysis of shearer drum

    图  3  DENA流程

    Figure  3.  Flow of DENA

    图  4  截割煤、岩时的音频特征参数曲线

    Figure  4.  Audio characteristic parameter curves when cutting coal and rock

    表  1  最大相异系数与煤岩识别率的关系

    Table  1.   Relationship between maximum dissimilarity coefficient and coal rock recognition rate

    最大相异系数识别率/%
    0~0.015 83.30
    0.015~0.189 77.80
    0.189~0.434 33.30
    0.434~1 16.70
    下载: 导出CSV
  • [1] 邱锦波. 滚筒采煤机自动化与智能化控制技术发展及应用[J]. 煤炭科学技术,2013,41(11):10-13.

    QIU Jinbo. Development and application of shearer automation and intelligent control technology[J]. Coal Science and Technology,2013,41(11):10-13.
    [2] 杨健健. 采煤机工作状态参数与煤岩硬度影响关系研究[D]. 北京: 中国矿业大学(北京), 2013.

    YANG Jianjian. Research on the affect relationship between shearer working condition parametersand coal-rock hardness[D]. Beijing: China University of Mining and Technology(Beijing), 2013.
    [3] 郝志勇, 周正啟, 袁智, 等. 基于实验测试的采煤机截割载荷的分形分布规律研究[J]. 应用力学学报,2019,36(2):417-423.

    HAO Zhiyong, ZHOU Zhengqi, YUAN Zhi, et al. Study on fractal distribution law of cutting load of shearer based on experimental tests[J]. Chinese Journal of Applied Mechanics,2019,36(2):417-423.
    [4] 郝志勇, 张佩, 毛君, 等. 采煤机摇臂销轴力学特性检测试验[J]. 机械设计与研究,2017,33(2):119-121.

    HAO Zhiyong, ZHANG Pei, MAO Jun, et al. Experimental research on the mchannical behavior of ranging arm shell for shearer[J]. Machine Design & Research,2017,33(2):119-121.
    [5] 郭会珍. 滚筒式采煤机截割部动力学特性研究[D]. 徐州: 中国矿业大学, 2014.

    GUO Huizhen. Research on dynamic characteristics of drum shearer cutting unit[D]. Xuzhou: China University of Mining and Technology, 2014.
    [6] 蒋干. 基于多传感信息融合的采煤机煤岩截割状态识别技术研究[D]. 徐州: 中国矿业大学, 2019.

    JIANG Gan. Research on recognition technology of shearer coal-rock cutting status based on multi-sensor information fusion[D]. Xuzhou: China University of Mining and Technology, 2019.
    [7] 刘译文. 基于红外热成像的采煤机截割模式识别方法研究[D]. 徐州: 中国矿业大学, 2018.

    LIU Yiwen. Research on shearer cutting pattern recognition method based on infrared thermal imaging[D]. Xuzhou: China University of Mining and Technology, 2018.
    [8] 田立勇. 基于多源数据融合的采煤机截割载荷识别与预测研究[D]. 阜新: 辽宁工程技术大学, 2020.

    TIAN Liyong. Research on identification and prediction of shearer cutting load based on multi-source data fusion[D]. Fuxin: Liaoning Technical University, 2020.
    [9] 张启志, 邱锦波, 庄德玉. 基于倒谱距离的采煤机煤岩截割振动信号识别[J]. 工矿自动化,2017,43(1):9-12.

    ZHANG Qizhi, QIU Jinbo, ZHUANG Deyu. Vibration signal identification of coal-rock cutting of shearer based on cepstral distance[J]. Industry and Mine Automation,2017,43(1):9-12.
    [10] 张宇, 刘雨东, 计钊. 向量相似度测度方法[J]. 声学技术,2009,28(4):532-536. doi: 10.3969/j.issn1000-3630.2009.04.021

    ZHANG Yu, LIU Yudong, JI Zhao. Vector similarity measurement method[J]. Technical Acoustics,2009,28(4):532-536. doi: 10.3969/j.issn1000-3630.2009.04.021
    [11] 吴婕萍, 李国辉. 煤岩界面自动识别技术发展现状及其趋势[J]. 工矿自动化,2015,41(12):44-49.

    WU Jieping, LI Guohui. Development status and tendency of automatic identification technologies of coal-rock interface[J]. Industry and Mine Automation,2015,41(12):44-49.
    [12] 陈浜. 基于视觉计算的煤岩识别方法研究[D]. 北京: 中国矿业大学(北京), 2018.

    CHEN Bang. Methodological studies of coal-rock recognition through visual computing[D]. Beijing: China University of Mining and Technology(Beijing), 2018.
    [13] 王昕, 苗曙光, 丁恩杰. 煤岩介质在太赫兹频段的介电特性研究[J]. 中国矿业大学学报,2016,45(4):739-746.

    WANG Xin, MIAO Shuguang, DING Enjie. Study of dielectric property of coal and rock medium in terahertz domain[J]. Journal of China University of Mining & Technology,2016,45(4):739-746.
    [14] 刘泽. 采煤机摇臂振动信号分析及其截割模式识别方法研究[D]. 徐州: 中国矿业大学, 2017.

    LIU Ze. Research on vibration signal of shearer rocker arm and its cutting pattern recognition method[D]. Xuzhou: China University of Mining and Technology, 2017.
    [15] 张启志. 采煤机截割振动信号采集系统的研究[D]. 北京: 煤炭科学研究总院, 2017.

    ZHANG Qizhi. Research on cutting vibration signal acquisition system of shearer[D]. Beijing: China Coal Research Institute, 2017.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  172
  • HTML全文浏览量:  44
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-11
  • 修回日期:  2021-12-26
  • 刊出日期:  2022-01-20

目录

    /

    返回文章
    返回