Reseaech on identification of caving coal and rock traits
-
摘要: 针对综放工作面垮落煤岩性状识别的技术问题,提出了一种基于连续小波变换和改进奇异值分解的识别方法。采用基于单边Jacobi的奇异值分解(SVD)方法对小波系数矩阵进行分解,得到与小波系数矩阵列向量位置对应的奇异值向量,并将奇异值向量作为神经网络的输入向量来识别落煤和落岩2种工况。现场试验结果表明,基于连续小波变换与SVD得到的奇异值向量可用于识别垮落煤岩,但基于连续小波变换与改进SVD得到的奇异值向量具有更高的识别率。Abstract: In order to recognize caving coal and rock traits in fully mechanized caving face, an identification method based on continuous wavelet transform and improved singular value decomposition (SVD) was proposed. The SVD method based on unilateral Jacobi is used to decompose wavelet coefficient matrix, so as to get singular value vectors corresponding to the column vector position of the wavelet coefficient matrix. The singular value vectors are used as input vector of neural network to identify two conditions of falling coal and falling rock. Field test results show that the singular value vectors acquired by the method based on continuous wavelet transform and SVD can be used to identify coal and rock, but the singular value vectors acquired by the method based on continuous wavelet transform and improved SVD has higher identification rate.
-
-
期刊类型引用(7)
1. 孟彬,张子鹏,吴明珂,王瑶,杨善国. 多通道信息融合煤矸识别方法研究. 制造业自动化. 2025(04): 48-53 . 百度学术
2. 李嘉豪,司垒,王忠宾,魏东,顾进恒. 综放工作面煤矸识别技术及其应用. 仪器仪表学报. 2024(01): 1-15 . 百度学术
3. 李一鸣. 基于小波包多尺度模糊熵和加权KL散度的煤岩智能识别. 工矿自动化. 2023(04): 92-98 . 本站查看
4. 窦希杰,王世博,刘后广,陈钱有,邹文才,卢召栋. 基于EMD特征提取与随机森林的煤矸识别方法. 工矿自动化. 2021(03): 60-65 . 本站查看
5. 李一鸣,白龙,蒋周翔,高宏,黄小龙,刘相权,黄民. 基于EEMD-KPCA和KL散度的垮落煤岩识别. 煤炭学报. 2020(02): 827-835 . 百度学术
6. 李一鸣,符世琛,周俊莹,宗凯,李瑞,吴淼. 基于小波包能量流和LTSA的垮落煤岩特征提取. 煤炭学报. 2018(S1): 331-337 . 百度学术
7. 李一鸣,符世琛,周俊莹,宗凯,李瑞,吴淼. 基于小波包熵和流形学习的垮落煤岩识别. 煤炭学报. 2017(S2): 585-593 . 百度学术
其他类型引用(5)
计量
- 文章访问数: 127
- HTML全文浏览量: 13
- PDF下载量: 15
- 被引次数: 12