留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超宽带雷达生命探测技术研究

赵尤信 姚海飞 李佳慧 彭然 李璕

赵尤信,姚海飞,李佳慧,等. 超宽带雷达生命探测技术研究[J]. 工矿自动化,2023,49(9):178-186.  doi: 10.13272/j.issn.1671-251x.18111
引用本文: 赵尤信,姚海飞,李佳慧,等. 超宽带雷达生命探测技术研究[J]. 工矿自动化,2023,49(9):178-186.  doi: 10.13272/j.issn.1671-251x.18111
ZHAO Youxin, YAO Haifei, LI Jiahui, et al. Research on ultra wideband radar life detection technology[J]. Journal of Mine Automation,2023,49(9):178-186.  doi: 10.13272/j.issn.1671-251x.18111
Citation: ZHAO Youxin, YAO Haifei, LI Jiahui, et al. Research on ultra wideband radar life detection technology[J]. Journal of Mine Automation,2023,49(9):178-186.  doi: 10.13272/j.issn.1671-251x.18111

超宽带雷达生命探测技术研究

doi: 10.13272/j.issn.1671-251x.18111
基金项目: 廊坊市科技局自筹项目(2020011017);中央高校基本科研业务费资助项目(3142020020)。
详细信息
    作者简介:

    赵尤信(1988—),男,山东临沂人,副研究员,博士,主要从事应急技术及火灾防治方面的研究工作,E-mail:zhaoyx_1026@126.com

  • 中图分类号: TD67

Research on ultra wideband radar life detection technology

  • 摘要: 超宽带(UWB)雷达生命探测技术具有功耗低、穿透性好、保密性高等优点,有利于提高灾后受困人员的生存率。系统总结了UWB雷达生命探测技术的国内外研究进展及现状。根据发射信号形式不同,将UWB雷达生命探测技术分为连续波雷达生命探测技术和脉冲波雷达生命探测技术,分别介绍了2种探测技术的原理与应用优势。基于连续波雷达生命探测技术和脉冲波雷达生命探测技术的各自特点,从探测信号发射、回波信号预处理、生命信号提取与分析3个角度,分析了UWB雷达生命探测关键技术,总结了3种关键技术的研究现状。对UWB雷达生命探测技术的研究进行展望:突破生命探测仪收发机硬件性能,提升发射信号带宽,优化射频功率放大技术,以增大穿墙探测距离;综合利用多种特征提取方法和智能模式分类方法,以及人工智能、大数据、云计算等新一代信息技术,提高目标识别的精确度;研制基于多输入多输出雷达的人体目标辨识与定位装备和高精度分布式组网全极化UWB雷达生命探测仪,提升探测结果维度。

     

  • 图  1  DN−IV型生命探测仪

    Figure  1.  DN−IV life detector

    图  2  YSR25矿用防爆型雷达生命探测仪模拟现场应用

    Figure  2.  Simulated field application of YSR25 mine-used explosion-proof radar life detector

    图  3  连续波雷达生命探测原理

    Figure  3.  Life detection principle of continuous wave radar

    图  4  脉冲波雷达生命探测原理

    Figure  4.  Life detection principle of pulse wave radar

    图  5  多普勒雷达发射模块结构

    Figure  5.  Structure of Doppler radar launch module

    图  6  SRD等效电路

    Figure  6.  Step recovery diode (SRD) equivalent circuit

    表  1  部分雷达生命探测设备

    Table  1.   Part of radar life detectors

    型号 产地 性能指标
    Lifelocator 3+ 美国 频率范围100~700 MHz,探测角度±60°,可探测6 m内的呼吸活动及10 m内的移动目标
    SRI UWB−SAR 美国 中心频率450 MHz,距离分辨率1 m,带宽250 MHz,最大探测距离25 m
    Xaver−400 以色列 频率范围3~10 GHz,检测张角80°,穿墙范围4,8,20 m,分辨率≤1 m,最大探测距离100 m
    Po−400 GPR− Detector 俄罗斯 中心频率400 MHz,穿墙后可检测7 m以外的移动人体,最大探测距离20 m
    GPR−Detector 英国 中心频率400 MHz,探测深度5 m,穿墙后可测20 m内移动目标,最大探测深度5 m
    LEADERSCAN 法国 中心频率400 MHz,穿墙后最大探测距离10 m,最大探测距离30 m
    下载: 导出CSV
  • [1] 李斌,傅唯威,王勇. 基于周期抽样的超宽带生命探测雷达信号处理方法[J]. 仪器仪表学报,2010,31(9):1979-1985.

    LI Bin,FU Weiwei,WANG Yong. Signal processing for ultra-wideband life detection radar based on periodic sampling[J]. Chinese Journal of Scientific Instrument,2010,31(9):1979-1985.
    [2] 费元春. 超宽带雷达与理论技术[M]. 北京:国防工业出版社,2010.

    FEI Yuanchun. Ultra wideband radar and theoretical technology[M]. Beijing:National Defense Industry Press,2010.
    [3] 何昊. 雷达目标模拟器快速测频模块设计[D]. 成都:电子科技大学,2020.

    HE Hao. Design of fast frequency measurement module in radar target simulator[D]. Chengdu:University of Electronic Science and Technology of China,2020.
    [4] SEKI T,SAITO K,TAKAHASHI M,et al. Proposition of UWB antenna wearing arm for WBAN[J]. ITE Technical Report,2009,33(10):1-4.
    [5] HAFNER N,MOSTAFANEZHAD I,LUBECKE V M,et al. Non-contact cardiopulmonary sensing with a baby monitor[C]. The 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,Lyon,2007:2300-2302.
    [6] SHIKHSARMAST F M,LYU Tinging,LIANG Xiaolin,et al. Random-noise denoising and clutter elimination of human respiration movements based on an improved time window selection algorithm using wavelet transform[J]. Sensors,2018. DOI: 10.3390/s19010095.
    [7] SOLDOVIERI F,CATAPANO I,CROCCO L,et al. A feasibility study for life signs monitoring via a continuous-wave radar[J]. International Journal of Antennas & Propagation,2014,12(6):1072-1075.
    [8] 王健琪,董秀珍,王海滨,等. 基于毫米波的呼吸、心率非接触检测实验[J]. 第四军医大学学报,2001(2):180-182.

    WANG Jianqi,DONG Xiuzhen,WANG Haibin,et al. Experimental study on non-contact detection of breathing and heartbeat based on millimeter wave[J]. Journal of the Fourth Military Medical University,2001(2):180-182.
    [9] 王保生. 超宽带信号穿透塌方体衰减特性及生命特征检测方法研究[D]. 哈尔滨:黑龙江科技大学,2017.

    WANG Baosheng. Research on attenuation characteristics and vital feature detection method of ultra wide band signal penetrating landslides [D]. Harbin:Heilongjiang University of Science and Technology,2017.
    [10] 陈绍黔,王湘新,韩明华. 警用超宽带雷达式生命探测仪的研制[J]. 警察技术,2013(2):74-77.

    CHEN Shaoqian,WANG Xiangxin,HAN Minghua. Development of a police ultra wideband radar type life detector[J]. Police Technology,2013(2):74-77.
    [11] 李秀贵,倪原. 一种UWB雷达脉冲信号发生器的设计[J]. 电子科技,2011,24(11):6-8.

    LI Xiugui,NI Yuan. Design of an ultra wide band radar pulse generator[J]. Electronic Science and Technology,2011,24(11):6-8.
    [12] 胡巍. 基于多普勒雷达的非接触式生命体征检测技术研究[D]. 合肥:中国科学技术大学,2014.

    HU Wei. Research on non-contact vital signs detection technology based on doppler radar [D]. Hefei:University of Science and Technology of China,2014.
    [13] 陈瑞鼎,鹿琪,单子涵,等. 基于卡尔曼滤波的超宽带穿墙雷达移动目标探测[J]. 地球物理学进展,2017,32(4):1758-1763.

    CHEN Ruiding,LU Qi,SHAN Zihan,et al. Moving target detection with the UWB through-wall radar based on Kalman filter[J]. Progress in Geophysics,2017,32(4):1758-1763.
    [14] 周小龙. 无载波超宽带雷达人体动作识别理论方法研究[D]. 桂林:桂林电子科技大学,2019.

    ZHOU Xiaolong. Research on the theoretical method of human motion recognition with carrier-free UWB radar[D]. Guilin:Guilin University of Electronic Science and Technology,2019.
    [15] VITEBSKIY S,CARIN L,RESSLER M A,et al. Ultra-wideband,short-pulse ground-penetrating radar:simulation and measurement[J]. IEEE Transaction on Geosci & Remote Sensing,1997,35(3):762-772.
    [16] 饶俊峰,章薇,李孜,等. 雪崩三极管串联的纳秒脉冲发生器[J]. 强激光与粒子束,2018,30(9):77-83.

    RAO Junfeng,ZHANG Wei,LI Zi,et al. Nanosecond pulse generator with avalanche transistors in series[J]. High Power Laser and Particle Beams,2018,30(9):77-83.
    [17] 何兴坤,钱鹏程. 基于雪崩三极管的脉冲发生器设计[J]. 电子测量技术,2019,42(21):65-69.

    HE Xingkun,QIAN Pengcheng. Pulse generator design based on avalanche transistor[J]. Electronic Measurement Technology,2019,42(21):65-69.
    [18] RONGEN M,SCHAUFEL M. Design and evaluation of a versatile picosecond light pulser[J]. Journal of Instrumentation,2018,13(6). DOI: 10.1088/1748-0221/13/06/P06002.
    [19] 张岩松,张亚东,梁步阁,等. 基于场效应管与阶跃恢复二极管的皮秒级脉冲源设计[J]. 强激光与粒子束,2017,29(4):81-85.

    ZHANG Yansong,ZHANG Yadong,LIANG Buge,et al. Design of picosecond pulse source based on MOSFET and step recovery diode[J]. High Power Laser and Particle Beams,2017,29(4):81-85.
    [20] 王蕾,冯谞浩,孟庆鹤. 采用双阶跃恢复二极管的高幅度双极性窄脉冲探地雷达脉冲源的设计[J]. 电子技术与软件工程,2016(22):124-125,162.

    WANG Lei,FENG Xuhao,MENG Qinghe. Design of high amplitude bi-polar narrow pulse ground penetrating radar pulse source using double step recovery diode[J]. Electronic Technology & Software Engineering,2016(22):124-125,162.
    [21] 王亚杰,何鹏军,荆晓鹏,等. 基于漂移阶跃恢复二极管开关的脉冲源仿真计算[J]. 强激光与粒子束,2018,30(9):92-97.

    WANG Yajie,HE Pengjun,JING Xiaopeng,et al. Simulation and calculation of pulsed power source based on drift step recovery diode switching[J]. High Power Laser and Particle Beams,2018,30(9):92-97.
    [22] 周铀. 射频毫米波集成电路中功率放大技术研究[D]. 成都:电子科技大学,2018.

    ZHOU You. Research on power amplifying technology of RF/milimeter wave integrated circuits[D]. Chengdu:University of Electronic Science and Technology of China,2018.
    [23] 孔德钰. 基于人工神经网络的低功耗射频收发系统研究[D]. 成都:电子科技大学,2019.

    KONG Deyu. Low power radio frequency transceiver system research based on artificial neural network[D]. Chengdu:University of Electronic Science and Technology of China,2019.
    [24] 张彦婷,林文斌,唐晋生. 用于探地雷达的超宽带单极子天线设计[J]. 电子测量技术,2019,42(15):65-68.

    ZHANG Yanting,LIN Wenbin,TANG Jinsheng. Ultra-wideband monopole antenna design for ground penetrating radar[J]. Electronic Measurement Technology,2019,42(15):65-68.
    [25] 郑艳. 基于CPW馈电的超宽带平面单极子天线研究[D]. 成都:西南交通大学,2019.

    ZHENG Yan. Research on ultra wideband planar monopole antenna based on CPW feeding[D]. Chengdu:Southwest Jiaotong University,2019.
    [26] SHOME P P, KHAN T, LASKAR R H. CSRR-loaded UWB monopole antenna with electronically tunable triple band-notch characteristics for cognitive radio applications[J]. Microwave and Optical Technology Letters, 2020, 62(9). DOI: 10.1002/mop.32394.

    SHOME P P,KHAN T,LASKAR R H. CSRR-loaded UWB monopole antenna with electronically tunable triple band-notch characteristics for cognitive radio applications[J]. Microwave and Optical Technology Letters,2020,62(9). DOI: 10.1002/mop.32394.
    [27] 高冬冬,徐玉. 基于24 GHz多普勒雷达的非接触呼吸监测系统设计[J]. 自动化应用,2019(2):53-56.

    GAO Dongdong,XU Yu. Design of non-contact respiratory monitoring system based on 24 GHz doppler radar[J]. Automation Application,2019(2):53-56.
    [28] 唐贵基,王晓龙. 参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用[J]. 西安交通大学学报,2015,49(5):73-81.

    TANG Guiji,WANG Xiaolong. Parameter optimized variational mode decomposition method with application to incipient fault diagnosis of rolling bearing[J]. Journal of Xi'an Jiaotong University,2015,49(5):73-81.
    [29] 刘长良,武英杰,甄成刚. 基于变分模态分解和模糊C均值聚类的滚动轴承故障诊断[J]. 中国电机工程学报,2015,35(13):3358-3365.

    LIU Changliang,WU Yingjie,ZHEN Chenggang. Rolling bearing fault diagnosis based on variational mode decomposition and fuzzy C means clustering[J]. Proceedings of the CSEE,2015,35(13):3358-3365.
    [30] KUMAR A,ZHOU Yuqing,XIANG Jiawei. Optimization of VMD using kernel-based mutual information for the extraction of weak features to detect bearing defects[J]. Measurement,2021,168. DOI: 10.1016/j.measurement.2020.108402.
    [31] 黄沁元,谢罗峰,殷国富,等. 基于变分模态分解和天牛须搜索的磁瓦内部缺陷声振检测[J]. 振动与冲击,2020,39(17):124-133.

    HUANG Qinyuan,XIE Luofeng,YIN Guofu,et al. Acoustic-vibration detection for internal defects of magnetic tile based on VMD and BAS[J]. Journal of Vibration and Shock,2020,39(17):124-133.
    [32] WANG Ran,XU Lei,LIU Fengkai. Bearing fault diagnosis based on improved VMD and DCNN[J]. Journal of Vibroengineering,2020,22(5):1055-1068. doi: 10.21595/jve.2020.21187
    [33] 康守强,胡明武,王玉静,等. 基于特征迁移学习的变工况下滚动轴承故障诊断方法[J]. 中国电机工程学报,2019,39(3):764-772,955.

    KANG Shouqiang,HU Mingwu,WANG Yujing,et al. Fault diagnosis method of a rolling bearing under variable working conditions based on feature transfer learning[J]. Proceedings of the CSEE,2019,39(3):764-772,955.
    [34] 马增强,李亚超,刘政,等. 基于变分模态分解和Teager能量算子的滚动轴承故障特征提取[J]. 振动与冲击,2016,35(13):134-139.

    MA Zengqiang,LI Yachao,LIU Zheng,et al. Rolling bearings' fault feature extraction based on variational mode decomposition and Teager energy operator[J]. Journal of Vibration and Shock,2016,35(13):134-139.
    [35] 乔美英,闫书豪,兰建义,等. 基于VMD−TEO窗和DBiLSTM的早期轴承故障诊断[J]. 中山大学学报(自然科学版),2020,59(5):66-77.

    QIAO Meiying,YAN Shuhao,LAN Jianyi,et al. Early bearing fault diagnosis based on VMD-TEO window function and DBiLSTM[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(5):66-77.
    [36] 吴小涛,江敏,孙洪军,等. 蝗虫优化相关向量机模型在径流预测中的应用[J]. 水电能源科学,2020,38(9):24-27,35.

    WU Xiaotao,JIANG Min,SUN Hongjun,et al. Application of relevant vector machine based grasshopper optimization algorithm in runoff prediction[J]. Water Resources and Power,2020,38(9):24-27,35.
    [37] LIU Chongdang,ZHANG Linxuan,NIU Jiahe,et al. Intelligent prognostics of machining tools based on adaptive variational mode decomposition and deep learning method with attention mechanism[J]. Neurocomputing,2020,417:239-254. doi: 10.1016/j.neucom.2020.06.116
    [38] LI Jing , ZENG Zhaofa, SUN Jiguang, et al. Through-wall detection of human being's movement by UWB radar[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(6): 1-5.

    LI Jing ,ZENG Zhaofa,SUN Jiguang,et al. Through-wall detection of human being's movement by UWB radar[J]. IEEE Geoscience and Remote Sensing Letters,2012,9(6):1-5.
    [39] 戴舜,朱方,徐艳云,等. 基于PCA与EMD的超宽带雷达生命信号检测算法[J]. 电子学报,2012,40(2):344-349.

    DAI Shun,ZHU Fang,XU Yanyun,et al. Vital signal detection method based on principal component analysis and empirical mode decomposition for ultra wideband radar[J]. Acta Electronica Sinica,2012,40(2):344-349.
    [40] LI Jing, LIU Lanbo, ZENG Zhaofa, et al. Advanced signal processing for vital sign extraction with applications in UWB radar detection of trapped victims in complex environments[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7: 783-791.

    LI Jing,LIU Lanbo,ZENG Zhaofa,et al. Advanced signal processing for vital sign extraction with applications in UWB radar detection of trapped victims in complex environments[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2014,7:783-791.
    [41] 王亮. 基于超宽带雷达生命探测算法研究[D]. 杭州:浙江大学,2017.

    WANG Liang. Research of life detection for UWB radar[D]. Hangzhou:Zhejiang University,2017.
    [42] 唐良勇,赵恒,张亚菊. 基于WA−EMD算法的脉冲式超宽带雷达多目标生命体征检测[J]. 南京理工大学学报,2017,41(2):198-206.

    TANG Liangyong,ZHAO Heng,ZHANG Yaju. Multiple-subject vital sign detection for impulse-radio ultra-wideband radar based on WA-EMD[J]. Journal of Nanjing University of Science and Technology,2017,41(2):198-206.
    [43] 崔丽辉. 基于超宽带雷达的生命体征信息检测研究[D]. 济南:山东建筑大学,2017.

    CUI Lihui. Research on the detection of vital sign based on UWB radar[D]. Jinan:Shandong Jianzhu University,2017.
    [44] 郭继坤,王保生,郝维来,等. 基于超宽带信号的矿井塌方体下生命特征的检测方法[J]. 黑龙江科技大学学报,2017,27(1):73-76,96.

    GUO Jikun,WANG Baosheng,HAO Weilai,et al. Research on detection method of life under mine based on ultra-wideband signal[J]. Journal of Heilongjiang University of Science and Technology,2017,27(1):73-76,96.
    [45] 陈德肯. 基于雷达信号的非接触体征检测技术研究[D]. 北京:北京邮电大学,2019.

    CHEN Deken. Research on non-contact vital signs detection technology using radar signals[D]. Beijing:Beijing University of Posts and Telecommunications,2019.
    [46] 郑学召,杨卓瑞,郭军,等. 灾后救援生命探测仪的现状和发展趋势[J]. 工矿自动化,2023,49(6):104-111.

    ZHENG Xuezhao,YANG Zhuorui,GUO Jun,et al. The current status and development trend of post-disaster rescue life detectors[J]. Journal of Mine Automation,2023,49(6):104-111.
    [47] 文虎,周博,郑学召,等. UWB雷达在矿山钻孔救援中的应用研究[J]. 工矿自动化,2023,49(6):88-94.

    WEN Hu,ZHOU Bo,ZHENG Xuezhao,et al. Research on the application of UWB radar in mine drilling rescue[J]. Journal of Mine Automation,2023,49(6):88-94.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  1155
  • HTML全文浏览量:  50
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-03
  • 修回日期:  2023-09-14
  • 网络出版日期:  2023-09-28

目录

    /

    返回文章
    返回