留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于5G的矿用装备远程控制技术研究

李晨鑫

李晨鑫. 基于5G的矿用装备远程控制技术研究[J]. 工矿自动化,2023,49(9):90-97.  doi: 10.13272/j.issn.1671-251x.18089
引用本文: 李晨鑫. 基于5G的矿用装备远程控制技术研究[J]. 工矿自动化,2023,49(9):90-97.  doi: 10.13272/j.issn.1671-251x.18089
LI Chenxin. Research on remote control technology of mining equipment based on 5G[J]. Journal of Mine Automation,2023,49(9):90-97.  doi: 10.13272/j.issn.1671-251x.18089
Citation: LI Chenxin. Research on remote control technology of mining equipment based on 5G[J]. Journal of Mine Automation,2023,49(9):90-97.  doi: 10.13272/j.issn.1671-251x.18089

基于5G的矿用装备远程控制技术研究

doi: 10.13272/j.issn.1671-251x.18089
基金项目: 天地科技股份有限公司科技创新创业资金专项(2023-TD-ZD005-001,2022-TD-ZD001,2022-2-TD-ZD001)。
详细信息
    作者简介:

    李晨鑫(1986—),男,河南永城人,副研究员,博士,研究方向为智能矿山通信技术,E-mail:ccrilichenxin@126.com

  • 中图分类号: TD655.3

Research on remote control technology of mining equipment based on 5G

  • 摘要: 矿用5G为智能矿山建设提供了高速信息传输通道,基于5G的矿用装备远程控制应用是实现少人化、无人化矿井生产的关键手段。分析了矿用4G、WiFi6应用于矿用装备远程控制中的不足,指出5G技术是实现矿用装备远程控制的必要支撑手段。运用信息物理系统架构研究方法构建了基于5G的矿用装备远程控制应用系统参考架构。以5G+采煤机远程控制为例,研究了5G传输链路的关键技术,梳理了监视监测数据与远程控制数据的信息流。当前5G网络为层三通信方式,而矿用装备远程控制的控制系统与受控设备之间需要进行点对点层二通信,针对该问题,研究了层二隧道构建方法和5G LAN技术,建立了远程控制信息传输的稳定通道。针对现场监视数据的大带宽传输需求与远程控制数据的低时延传输需求,提出了资源预调度与请求调度灵活适配的空口资源分配机制。现场测试结果表明:通过层二隧道共传输数据包13 328个,未出现丢包或接收不成功的现象;端到端时延为11.5~23.8 ms,能够满足矿用装备远程控制的传输需求;RSRP(参考信号接收功率)分布在−93~−53 dB·m之间,SINR(信号与干扰加噪声比)分布在10~38 dB之间,无线覆盖情况良好。矿用5G无线通信系统的可靠性、端到端时延及无线覆盖情况能够满足采煤机远程控制的传输需求。

     

  • 图  1  基于5G的矿用装备远程控制应用系统参考架构研究方法

    Figure  1.  Research method of reference architecture of 5G based mine equipment remote control application system

    图  2  基于5G的矿用装备远程控制应用系统参考架构

    Figure  2.  Reference architecture of 5G based mine equipment remote control application system

    图  3  基于5G的采煤机远程控制信息流

    Figure  3.  Information flow of 5G based shearer remote control

    图  4  采用本地交换机的5G LAN链路

    Figure  4.  5G LAN link using local switch

    图  5  基于5G的矿用装备远程控制空口资源调度机制

    Figure  5.  Over the air bandwidth scheduling mechanism of 5G based mine equipment remote control

    图  6  端到端时延测试数据

    Figure  6.  Test data of end-to-end latency

    图  7  RSRP测试数据

    Figure  7.  Test data of RSRP

    图  8  SINR测试数据

    Figure  8.  Test data of SINR

  • [1] 孙继平. 煤矿智能化与矿用5G[J]. 工矿自动化,2020,46(8):1-7.

    SUN Jiping. Coal mine intelligence and mine-used 5G[J]. Industry and Mine Automation,2020,46(8):1-7.
    [2] 孙继平. 煤矿智能化与矿用5G和网络硬切片技术[J]. 工矿自动化,2021,47(8):1-6.

    SUN Jiping. Coal mine intelligence,mine 5G and network hard slicing technology[J]. Industry and Mine Automation,2021,47(8):1-6.
    [3] 王国法,赵国瑞,胡亚辉. 5G技术在煤矿智能化中的应用展望[J]. 煤炭学报,2020,45(1):16-23.

    WANG Guofa,ZHAO Guorui,HU Yahui. Application prospect of 5G technology in coal mine intelligence[J]. Journal of China Coal Society,2020,45(1):16-23.
    [4] 霍振龙. 矿井无线通信系统现状与发展趋势[J]. 工矿自动化,2022,48(6):1-5.

    HUO Zhenlong. Current situation and development trend of mine wireless communication system[J]. Journal of Mine Automation,2022,48(6):1-5.
    [5] 李晨鑫. 矿用5G通信演进技术研究[J]. 工矿自动化,2023,49(3):6-12.

    LI Chenxin. Research on mine 5G-advanced communication evolution technology[J]. Journal of Mine Automation,2023,49(3):6-12.
    [6] 王国法,张良,李首滨,等. 煤矿无人化智能开采系统理论与技术研发进展[J]. 煤炭学报,2023,48(1):34-53.

    WANG Guofa,ZHANG Liang,LI Shoubin,et al. Progresses in theory and technological development of unmanned smart mining system[J]. Journal of China Coal Society,2023,48(1):34-53.
    [7] 范京道,闫振国,李川. 基于5G技术的煤矿智能化开采关键技术探索[J]. 煤炭科学技术,2020,48(7):92-97.

    FAN Jingdao,YAN Zhenguo,LI Chuan. Exploration of intelligent coal mining key technology based on 5G technology[J]. Coal Science and Technology,2020,48(7):92-97.
    [8] 张凯隆. 智能化综采工作面全景视频远控技术研究及应用[J]. 中国煤炭,2023,49(2):70-81. doi: 10.3969/j.issn.1006-530X.2023.02.009

    ZHANG Kailong. Research and application of panoramic video remote control technology for intelligent fully mechanized mining face[J]. China Coal,2023,49(2):70-81. doi: 10.3969/j.issn.1006-530X.2023.02.009
    [9] 顾义东. 5G技术在煤矿掘进工作面运输系统中的应用[J]. 工矿自动化,2022,48(6):64-68. doi: 10.13272/j.issn.1671-251x.17919

    GU Yidong. Application of 5G technology in coal mine heading face transportation system[J]. Journal of Mine Automation,2022,48(6):64-68. doi: 10.13272/j.issn.1671-251x.17919
    [10] 孙继平,江嬴. 矿井车辆无人驾驶关键技术研究[J]. 工矿自动化,2022,48(5):1-5,31. doi: 10.13272/j.issn.1671-251x.17947

    SUN Jiping,JIANG Ying. Research on key technologies of mine unmanned vehicle[J]. Journal of Mine Automation,2022,48(5):1-5,31. doi: 10.13272/j.issn.1671-251x.17947
    [11] 李晨鑫,张立亚. 煤矿井下网联式自动驾驶技术研究[J]. 工矿自动化,2022,48(6):49-55. doi: 10.13272/j.issn.1671-251x.17930

    LI Chenxin,ZHANG Liya. Research on the network connected automatic driving technology in underground coal mine[J]. Journal of Mine Automation,2022,48(6):49-55. doi: 10.13272/j.issn.1671-251x.17930
    [12] 工业和信息化部. 工业和信息化部关于加强和规范2 400 MHz、5 100 MHz和5 800 MHz频段无线电管理有关事宜的通知[EB/OL]. (2021-09-08)[2023-03-10]. https://www.miit.gov.cn/zwgk/zcwj/wjfb/tz/art/2021/art_e4ae71252eab42928daf0ea620976e4e.html.

    Ministry of Industry and Information Technology. Ministry of Industry and Information Technology:notification of related matters for strengthening and standardizing radio management in the 2 400 MHz,5 100 MHz,and 5 800 MHz frequency bands[EB/OL]. (2021-09-08)[2023-03-10]. https://www.miit.gov.cn/zwgk/zcwj/wjfb/tz/art/2021/art_e4ae71252eab42928daf0ea620976e4e.html.
    [13] 3GPP TS 38.211. 3rd generation partnership project; technical specification group radio access network; NR; physical channels and modulation (Release 17)[S
    [14] 3GPP TS 38.212. 3rd generation partnership project; technical specification group radio access network; NR; multiplexing and channel coding (Release 17) [S
    [15] 3GPP TS 38.213. 3rd generation partnership project; technical specification group radio access network; NR; physical layer procedures for control (Release 17) [S
    [16] 杨挺,刘亚闯,刘宇哲,等. 信息物理系统技术现状分析与趋势综述[J]. 电子与信息学报,2021,43(12):3393-3406.

    YANG Ting,LIU Yachuang,LIU Yuzhe,et al. Review on cyber-physical system:technology analysis and trends[J]. Journal of Electronics & Information Technology,2021,43(12):3393-3406.
    [17] 李克强. 智能网联汽车信息物理系统参考架构1.0发布[J]. 智能网联汽车,2019(6):66-69.

    LI Keqiang. Intelligent connected vehicle information physics system reference architecture 1.0 Release[J]. Intelligent Connected Vehicles,2019(6):66-69.
    [18] 3GPP TS 22.104. 3rd generation partnership project; service requirements for cyber-physical control applications in vertical domains(Release 17)[S
    [19] 黄蓉,唐雄燕,裴郁杉,等. 5G工业专网架构和关键技术探讨[J]. 移动通信,2022,46(8):8-14.

    HUANG Rong,TANG Xiongyan,PEI Yushan,et al. Discussion on 5G industrial private network architecture and key technologies[J]. Mobile Communications,2022,46(8):8-14.
    [20] 3GPP TS 38.321. 3rd generation partnership project; technical specification group radio access network; NR; medium access control (MAC) protocol specification (Release 17)[S
    [21] 李卫,孙雷,王健全,等. 面向工业自动化的5G与TSN协同关键技术[J]. 工程科学学报,2022,44(6):1044-1052.

    LI Wei,SUN Lei,WANG Jianquan,et al. Key technologies to enable 5G and TSN coordination for industrial automation[J]. Chinese Journal of Engineering,2022,44(6):1044-1052.
  • 加载中
图(8)
计量
  • 文章访问数:  1553
  • HTML全文浏览量:  54
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-20
  • 修回日期:  2023-09-08
  • 网络出版日期:  2023-09-27

目录

    /

    返回文章
    返回