留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于ADS和HFSS的矿井UWB射频前端电磁联合仿真方法

任文清

任文清. 基于ADS和HFSS的矿井UWB射频前端电磁联合仿真方法[J]. 工矿自动化,2023,49(2):85-93.  doi: 10.13272/j.issn.1671-251x.18073
引用本文: 任文清. 基于ADS和HFSS的矿井UWB射频前端电磁联合仿真方法[J]. 工矿自动化,2023,49(2):85-93.  doi: 10.13272/j.issn.1671-251x.18073
REN Wenqing. Mine UWB radio frequency front-end electromagnetic co-simulation method based on ADS and HFSS[J]. Journal of Mine Automation,2023,49(2):85-93.  doi: 10.13272/j.issn.1671-251x.18073
Citation: REN Wenqing. Mine UWB radio frequency front-end electromagnetic co-simulation method based on ADS and HFSS[J]. Journal of Mine Automation,2023,49(2):85-93.  doi: 10.13272/j.issn.1671-251x.18073

基于ADS和HFSS的矿井UWB射频前端电磁联合仿真方法

doi: 10.13272/j.issn.1671-251x.18073
基金项目: 国家能源集团科技创新项目(GJNY2030XDXM-19-06.1);国家重点研发计划项目(2017YFC0804303)。
详细信息
    作者简介:

    任文清(1984—),男,陕西神木人,工程师,硕士,现从事矿井精确定位方面的工作,E-mail:345939212@qq.com

  • 中图分类号: TD655

Mine UWB radio frequency front-end electromagnetic co-simulation method based on ADS and HFSS

  • 摘要: 射频前端是矿井超宽带(UWB)定位系统的重要组成部分,其电磁性能影响定位精度。目前UWB定位系统射频前端设计一般针对单独器件或芯片使用ADS或HFSS进行仿真设计,随着射频前端设计的频段越来越高,分立元件、传输线等三维结构之间引起的寄生效应对射频前端电路性能的影响越来越大,需要研究板级射频前端电磁联合仿真方法。针对上述问题,提出了一种基于ADS和HFSS的矿井UWB射频前端电磁联合仿真方法。首先,采用HFSS软件对无源器件进行建模,并用HFSS软件直接进行仿真得到对应的snp文件。然后,使用ADS软件建立有源器件原理图,将参数读取控件和原理图连接,并将snp文件导入控件中。最后,在ADS中对原理图进行仿真,ADS和HFSS之间通过S参数作为媒介来进行联合操作,实现UWB射频前端电磁特性的联合仿真。综合运用ADS和HFSS对UWB射频前端有源器件、无源器件及整体板级电路进行联合仿真,并根据仿真原理制作测试样品,实验结果表明,联合仿真结果与样品实测结果匹配,可用于UWB射频前端设计和电磁性能综合测试。将以电磁联合仿真方法设计的射频前端制作成PCB样品并用于UWB定位系统进行定位极限距离测试,测试结果表明,以电磁联合仿真方法设计的射频前端完全可以满足实际产品性能需求,在设计阶段对实际产品效果预测准确,提高了设计效率,降低了设计成本。

     

  • 图  1  ADS和HFSS联合仿真原理

    Figure  1.  Co-simulation principle of ADS and HFSS

    图  2  微带传输线的HFSS模型

    Figure  2.  HFSS model of microstrip transmission line

    图  3  微带传输线的PCB样品

    Figure  3.  PCB sample of microstrip transmission line

    图  4  微带传输线仿真性能和实测性能对比

    Figure  4.  Comparison between simulation performance and measured performance of microstrip transmission line

    图  5  巴伦测试板HFSS模型

    Figure  5.  HFSS model of Barron test board

    图  6  巴伦测试板样品

    Figure  6.  Sample of Barron test board

    图  7  巴伦测试板联合仿真原理

    Figure  7.  Co-simulation principle of Barron test board

    图  8  巴伦测试板仿真性能和实测性能对比

    Figure  8.  Comparison between simulation performance and measured performance of Barron test board

    图  9  放大器测试板HFSS模型

    Figure  9.  HFSS model of amplifier test board

    图  10  放大器测试板样品

    Figure  10.  Sample of amplifier test board

    图  11  放大器测试板联合仿真原理

    Figure  11.  Co-simulation principle of amplifier test board

    图  12  放大器测试板仿真性能和实测性能对比

    Figure  12.  Comparison between simulation performance and measured performance of amplifier test board

    图  13  射频前端HFSS模型

    Figure  13.  HFSS model of RF front-end

    图  14  射频前端样品

    Figure  14.  Sample of RF front-end

    图  15  收发状态下射频前端联合仿真原理

    Figure  15.  Co-simulation principle of RF front-end under transceiver status

    图  16  接收通道仿真性能和实测性能对比

    Figure  16.  Comparison between simulation performance and measured performance of receiving channel

    图  17  发射通道仿真性能和实测性能对比

    Figure  17.  Comparison between simulation performance and measured performance of transmission channel

    图  18  测试布置

    Figure  18.  Test layout

  • [1] 孙继平. 煤矿智能化与矿用5G[J]. 工矿自动化,2020,46(8):1-7. doi: 10.13272/j.issn.1671-251x.17648

    SUN Jiping. Coal mine intelligence and mine-used 5G[J]. Industry and Mine Automation,2020,46(8):1-7. doi: 10.13272/j.issn.1671-251x.17648
    [2] 孙继平. 煤矿智能化与矿用5G和网络硬切片技术[J]. 工矿自动化,2021,47(8):1-6. doi: 10.13272/j.issn.1671-251x.17821

    SUN Jiping. Coal mine intelligence,mine 5G and network hard slicing technology[J]. Industry and Mine Automation,2021,47(8):1-6. doi: 10.13272/j.issn.1671-251x.17821
    [3] 孙继平,程加敏. 煤矿智能化信息综合承载网[J]. 工矿自动化,2022,48(3):1-4,90.

    SUN Jiping,CHENG Jiamin. Coal mine intelligent information comprehensive carrier network[J]. Journal of Mine Automation,2022,48(3):1-4,90.
    [4] 孙继平,江嬴. 矿井车辆无人驾驶关键技术研究[J]. 工矿自动化,2022,48(5):1-5,31.

    SUN Jiping,JIANG Ying. Research on key technologies of mine unmanned vehicle[J]. Journal of Mine Automation,2022,48(5):1-5,31.
    [5] LI Menggang,ZHU Hua,YOU Shaoze,et al. UWB-based localization system aided with inertial sensor for underground coal mine applications[J]. IEEE Sensors Journal,2020,20(12):6652-6669. doi: 10.1109/JSEN.2020.2976097
    [6] 符世琛,李一鸣,张敏骏,等. 基于UWB信号的TW−TOF测距技术在狭长巷道中的精度测试实验研究[J]. 煤炭技术,2017,36(3):246-248. doi: 10.13301/j.cnki.ct.2017.03.093

    FU Shichen,LI Yiming,ZHANG Minjun,et al. Accuracy testing experiment in narrow roadway based on TW-TOF ranging technique of UWB signals[J]. Coal Technology,2017,36(3):246-248. doi: 10.13301/j.cnki.ct.2017.03.093
    [7] 郝维来,杨公训. 基于UWB无线通信技术在矿井中的应用研究[J]. 计算机应用研究,2008,25(2):600-602. doi: 10.3969/j.issn.1001-3695.2008.02.087

    HAO Weilai,YANG Gongxun. Application of wireless communication technology based on UWB in coal mine underground[J]. Application Research of Computers,2008,25(2):600-602. doi: 10.3969/j.issn.1001-3695.2008.02.087
    [8] 刘清. 基于超宽带技术的采煤机定位系统设计[J]. 煤炭科学技术,2016,44(11):132-135. doi: 10.13199/j.cnki.cst.2016.11.025

    LIU Qing. Design on positioning system of shearer based on ultra wide band technology[J]. Coal Science and Technology,2016,44(11):132-135. doi: 10.13199/j.cnki.cst.2016.11.025
    [9] 朱臣伟,刘娟,唐昊,等. 基于协同仿真技术的超宽带射频微系统热电设计[J]. 固体电子学研究与进展,2022,42(4):269-274,286.

    ZHU Chenwei,LIU Juan,TANG Hao,et al. Thermoelectric design of ultra-wideband RF microsystem based on co-simulation technology[J]. Research & Progress of SSE,2022,42(4):269-274,286.
    [10] 王也,覃焕耀,高洪民,等. 基于ADS的2.4 GHz射频通信系统设计与仿真分析[J]. 微波学报,2020,36(增刊1):218-221.

    WANG Ye,QIN Huanyao,GAO Hongmin,et al. Design and simulation analysis of 2.4 GHz RF communication system based on ADS[J]. Journal of Microwaves,2020,36(S1):218-221.
    [11] 王尚,马竟轩,杨东升,等. 射频器件超细引线键合射频性能仿真[J]. 焊接学报,2021,42(10):1-7,97.

    WANG Shang,MA Jingxuan,YANG Dongsheng,et al. Research on the RF performance simulation of ultra-fine wire bonding of RF devices[J]. Transactions of the China Welding Institution,2021,42(10):1-7,97.
    [12] 南敬昌,王明寰,王宛,等. 采用阶梯形微带馈线的高隔离度超宽带MIMO天线[J]. 微波学报,2021,37(3):6-9,46. doi: 10.14183/j.cnki.1005-6122.202103002

    NAN Jingchang,WANG Minghuan,WANG Wan,et al. Design of high isolation UWB MIMO antenna employing stepped microstrip feeder[J]. Journal of Microwaves,2021,37(3):6-9,46. doi: 10.14183/j.cnki.1005-6122.202103002
    [13] 谢红云,刘芮,陈泉秀,等. 基于双重增益控制技术的超宽带可变增益放大器的设计与实现[J]. 北京工业大学学报,2019,45(7):646-653. doi: 10.11936/bjutxb2018040012

    XIE Hongyun,LIU Rui,CHEN Quanxiu,et al. Design and implementation of an ultra-wide band variable gain amplifier based on dual gain control technology[J]. Journal of Beijing University of Technology,2019,45(7):646-653. doi: 10.11936/bjutxb2018040012
    [14] 谢泽明,丁环环,谢启球. 基于平均相关能量增益的超宽带平面振子优化[J]. 电波科学学报,2012,27(5):1043-1048. doi: 10.13443/j.cjors.2012.05.012

    XIE Zeming,DING Huanhuan,XIE Qiqiu. Optimization design of UWB planar dipole based on mean effective correlated energy gain[J]. Chinese Journal of Radio Science,2012,27(5):1043-1048. doi: 10.13443/j.cjors.2012.05.012
    [15] 邱浩,王曙鸿,孙凤举,等. 基于时域有限积分技术的四级串联快脉冲直线型变压器驱动源电磁特性[J]. 电工技术学报,2022,37(4):816-826.

    QIU Hao,WANG Shuhong,SUN Fengju,et al. The electromagnetic characteristics of the four-stage series-connected fast linear transformer driver based on time-domain finite integration technique[J]. Transactions of China Electrotechnical Society,2022,37(4):816-826.
    [16] 李朝科,李志强,肖翦,等. 300 Mvar调相机端部电磁场三维有限元分析[J]. 东方电气评论,2016,30(3):19-23. doi: 10.3969/j.issn.1001-9006.2016.03.006

    LI Chaoke,LI Zhiqiang,XIAO Jian,et al. 3D finite element analysis of the electromagnetic field in end region of 300 Mvar phasing generator[J]. Dongfang Electric Review,2016,30(3):19-23. doi: 10.3969/j.issn.1001-9006.2016.03.006
    [17] 王鸿鹄,周洋. 电机电磁场有限元仿真网格生成方法研究[J]. 电机与控制应用,2021,48(11):33-38. doi: 10.12177/emca.2021.101

    WANG Honghu,ZHOU Yang. Research on mesh generation method of finite element simulation of motor electromagnetic field[J]. Electric Machines & Control Application,2021,48(11):33-38. doi: 10.12177/emca.2021.101
    [18] 李世界,张兰,杨公宇,等. 基于ADS的高频雷达接收机仿真实验设计[J]. 实验室研究与探索,2018,37(12):133-136. doi: 10.3969/j.issn.1006-7167.2018.12.031

    LI Shijie,ZHANG Lan,YANG Gongyu,et al. Design of the simulation experiment for high frequency radar receiver based on ADS[J]. Research and Exploration in Laboratory,2018,37(12):133-136. doi: 10.3969/j.issn.1006-7167.2018.12.031
    [19] 黎鹏,曾源坤,周忠超,等. 基于ADS的射频通信系统设计与分析[J]. 实验科学与技术,2019,17(2):27-31. doi: 10.3969/j.issn.1672-4550.2019.02.007

    LI Peng,ZENG Yuankun,ZHOU Zhongchao,et al. Design and analysis of RF communication system based on ADS software[J]. Experiment Science and Technology,2019,17(2):27-31. doi: 10.3969/j.issn.1672-4550.2019.02.007
    [20] 孙成芹,胡永建,李显义,等. 基于HFSS仿真的感应耦合传输装置设计[J]. 电子测量技术,2021,44(2):32-35. doi: 10.19651/j.cnki.emt.2005225

    SUN Chengqin,HU Yongjian,LI Xianyi,et al. Design of inductive coupling transmission device based on HFSS simulation[J]. Electronic Measurement Technology,2021,44(2):32-35. doi: 10.19651/j.cnki.emt.2005225
    [21] 章露. 基于HFSS的X波段T/R组件仿真设计研究[J]. 航空维修与工程,2022(10):70-73. doi: 10.3969/j.issn.1672-0989.2022.10.021

    ZHANG Lu. Research on simulation design of X-band T/R module based on HFSS[J]. Aviation Maintenance & Engineering,2022(10):70-73. doi: 10.3969/j.issn.1672-0989.2022.10.021
  • 加载中
图(18)
计量
  • 文章访问数:  197
  • HTML全文浏览量:  32
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-18
  • 修回日期:  2023-02-16
  • 网络出版日期:  2023-02-27

目录

    /

    返回文章
    返回