留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于5G C−RAN技术的数字化矿山全光网研究

申雪 刘吉超 李龙飞

申雪,刘吉超,李龙飞. 基于5G C−RAN技术的数字化矿山全光网研究[J]. 工矿自动化,2023,49(3):85-92, 99.  doi: 10.13272/j.issn.1671-251x.18065
引用本文: 申雪,刘吉超,李龙飞. 基于5G C−RAN技术的数字化矿山全光网研究[J]. 工矿自动化,2023,49(3):85-92, 99.  doi: 10.13272/j.issn.1671-251x.18065
SHEN Xue, LIU Jichao, LI Longfei. Research on digital mine all-optical network based on 5G C-RAN technology[J]. Journal of Mine Automation,2023,49(3):85-92, 99.  doi: 10.13272/j.issn.1671-251x.18065
Citation: SHEN Xue, LIU Jichao, LI Longfei. Research on digital mine all-optical network based on 5G C-RAN technology[J]. Journal of Mine Automation,2023,49(3):85-92, 99.  doi: 10.13272/j.issn.1671-251x.18065

基于5G C−RAN技术的数字化矿山全光网研究

doi: 10.13272/j.issn.1671-251x.18065
详细信息
    作者简介:

    申雪(1984—),女,山西长治人,副研究员,现主要从事安全生产管理、智慧矿山等方面的研究工作,E-mail:shenxuexue@126.com

    通讯作者:

    刘吉超(1985—),男,江西赣州人,工程师,从事信息化建设、数字经济等方面的研究工作,E-mail: liujichao86@139.com

  • 中图分类号: TD655

Research on digital mine all-optical network based on 5G C-RAN technology

  • 摘要: 建设数字化矿山的首要问题之一是构建一张低时延、大带宽、高可靠的高品质信息网络,WiFi、4G等传统无线通信技术已无法满足矿山数字化转型的新需求。从数字化矿山对通信网络的需求出发,研究了5G技术在井下矿山应用的必要性和部署难点,指出基于集中式无线接入网(C−RAN)的井下5G组网方案可有效降低5G网络在井下的部署要求和难度,但须解决光纤资源消耗大、“哑资源”故障管理难2个问题。提出了基于5G C−RAN技术的数字化矿山全光网系统,从C−RAN接入网、高速全光网、智能管控平台3个层面阐述了系统架构,并研究了半有源光网络架构、低成本波分复用(WDM)高速传输、智能管控平台等关键技术。该系统采用直检WDM技术节省光纤资源,可将光纤使用数量减少91.67%,同时基于半有源架构、调顶操作维护管理(OAM)技术实现对光纤网络的低成本管控和灵活部署,破解井下巷道光纤资源紧张和光纤网络管理难题。实验结果表明:12个不同波长WDM光模块的发送光功率为3.5~5.2 dBm,接收灵敏度为−16.9~−19.0 dBm,链路预算能力可达21 dB以上,满足应用要求;消光比为4.7~5.1 dB,眼图裕量大于17.5%,表明了较高的信号质量;在低温−40 ℃和高温85 ℃下,WDM光模块发送光功率、接收灵敏度均存在一定性能劣化,但仍然能够满足10 km传输需求。现场应用结果表明,12个不同波长WDM光模块的发送光功率为3.7~5.6 dBm,接收灵敏度为−17.9 ~ −16.3 dBm,其中最差通道的链路预算能力仍在20.2 dB以上,满足应用要求。

     

  • 图  1  井下矿山传统D−RAN组网方案

    Figure  1.  Traditional D-RAN networking scheme for underground mines

    图  2  井下矿山C−RAN组网方案

    Figure  2.  C-RAN networking scheme for underground mines

    图  3  基于5G C−RAN技术的数字化矿山全光网系统架构

    Figure  3.  Digital mine all-optical network system architecture based on 5G C-RAN technology

    图  4  半有源WDM传输网络

    Figure  4.  Semi-active WDM transmission network

    图  5  井下巷道光纤网络施工规划

    Figure  5.  Construction planning of optical fiber network in underground roadway

    图  6  实验平台

    Figure  6.  Experimental platform

    图  7  12个不同波长WDM光模块的发送光功率和接收灵敏度

    Figure  7.  Transmitting optical power and receiving sensitivity of 12 WDM optical modules with different wavelengths

    图  8  12个不同波长WDM光模块的消光比

    Figure  8.  Extinction ratio of 12 WDM optical modules with different wavelengths

    图  9  不同波长的眼图测试结果

    Figure  9.  Eye graph test results of different wavelengths

    图  10  高低温环境下12个不同波长WDM光模块的性能

    Figure  10.  Performance of 12 WDM optical modules with different wavelengths in high and low temperature environment

    图  11  管控平台显示的部分结果

    Figure  11.  Some results displayed on the control platform

    图  12  现网试应用中加载业务在线测试结果

    Figure  12.  Load service online test results in the current network trial application

  • [1] 牛锐,陈鲜岷. 矿山自动化设备研究及实践应用[J]. 现代工业经济和信息化,2021,11(9):139-140.

    NIU Rui,CHEN Xianmin. Research and practical application of mine automation equipment[J]. Modern Industrial Economy and Informationization,2021,11(9):139-140.
    [2] 陈龙,王晓,杨健健,等. 平行矿山:从数字孪生到矿山智能[J]. 自动化学报,2021,47(7):1633-1645. doi: 10.16383/j.aas.2021.y000001

    CHEN Long,WANG Xiao,YANG Jianjian,et al. Parallel mining operating systems:from digital twins to mining intelligence[J]. Acta Automatica Sinica,2021,47(7):1633-1645. doi: 10.16383/j.aas.2021.y000001
    [3] 马小平,胡延军,缪燕子. 物联网、大数据及云计算技术在煤矿安全生产中的应用研究[J]. 工矿自动化,2014,40(4):5-9. doi: 10.13272/j.issn.1671-251x.2014.04.002

    MA Xiaoping,HU Yanjun,MIAO Yanzi. Application research of technologies of Internet of things,big data and cloud computing in coal mine safety production[J]. Industry and Mine Automation,2014,40(4):5-9. doi: 10.13272/j.issn.1671-251x.2014.04.002
    [4] 王杰. 数字化矿山系统及智能化在矿井中的应用[J]. 矿业装备,2022(2):194-195. doi: 10.3969/j.issn.2095-1418.2022.02.091

    WANG Jie. Application of digital mine system and intelligence in mine[J]. Mining Equipment,2022(2):194-195. doi: 10.3969/j.issn.2095-1418.2022.02.091
    [5] 吕鹏飞,郭军. 我国煤矿数字化矿山发展现状及关键技术探讨[J]. 工矿自动化,2009,35(9):16-20.

    LYU Pengfei,GUO Jun. Discussion on development situation and key technologies of digital mine in China[J]. Industry and Mine Automation,2009,35(9):16-20.
    [6] 陈磊. 关于数字化矿山系统分析及智能化在矿井中的应用探讨[J]. 科学与信息化,2021(1):114.

    CHEN Lei. Digital mine system analysis and discussion on the application of intelligence in mine[J]. Science and Information,2021(1):114.
    [7] 霍振龙,张袁浩. 5G通信技术及其在煤矿的应用构想[J]. 工矿自动化,2020,46(3):1-5.

    HUO Zhenlong,ZHANG Yuanhao. 5G communication technology and its application conception in coal mine[J]. Industry and Mine Automation,2020,46(3):1-5.
    [8] 张立亚. 煤矿5G通信系统安全应用技术研究[J]. 工矿自动化,2021,47(12):8-12. doi: 10.13272/j.issn.1671-251x.17854

    ZHANG Liya. Research on safety application technology of coal mine 5G communication system[J]. Industry and Mine Automation,2021,47(12):8-12. doi: 10.13272/j.issn.1671-251x.17854
    [9] CHIH-LIN I, HUANG Jinri. RAN revolution with NGFI (xHaul) for 5G[C]. Optical Fiber Communications Conference and Exhibition, Los Angeles, 2017.
    [10] LEVRAU L, REMEDIOS D. Guidelines for a cost optimised 5G WDM-based fronthaul network[C]. European Conference on Optical Communication, Bordeaux, 2021.
    [11] HONDA K, KOBAYASHI T, SHIMADA T, et al. WDM passive optical network managed with embedded pilot tone for mobile fronthaul[C]. European Conference on Optical Communication, Valencia, 2015.
    [12] SUN Han,TORBATIAN M,KARIMI M,et al. 800 G DSP ASIC design using probabilistic shaping and digital sub-carrier multiplexing[J]. Journal of Lightwave Technology,2020,38(17):4744-4756. doi: 10.1109/JLT.2020.2996188
    [13] XU Mengyue,ZHU Yuntao,PITTALÀ F,et al. Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission[J]. Optica,2022,9(1):61-62. doi: 10.1364/OPTICA.449691
    [14] GE Dawei, ZHANG Houyuan, YU Cong, et al. Real-time 10-λ×800 Gb/s sub-carrier-multiplexing 95 GBd DP-64QAM-PCS transmission over 2018 km G. 654. E fibre with pure backward distributed raman amplification[C]. European Conference on Optical Communication, Basel, 2022.
    [15] 荆瑞泉. 40GE/100GE和并行OTN接口的标准化和设备发展现状[J]. 电信科学,2012,28(8):120-123.

    JING Ruiquan. Standardization and equipment status of 40GE/100GE and parallel OTN interface[J]. Telecommunications Science,2012,28(8):120-123.
    [16] PAN Hui. Terabit BiDi MSA targets 800 G,1.6 T over data center multimode fiber[J]. Fiber Optics & Communications:Monthly Newsletter Lovering Domestic & International News on Fiber Optic Communications and Related Fields,2022,45(2):13.
    [17] 邓琨,高万超,陈意,等. 400 Gbit/s FR4光收发模块的研究[J]. 光通信研究,2021(3):43-47.

    DENG Kun,GAO Wanchao,CHEN Yi,et al. Research on 400 Gbit/s FR4 optical transceiver module[J]. Study on Optical Communications,2021(3):43-47.
    [18] ITU-T G. 694.2: spectral grids for WDM applications: CWDM wavelength grid[S].
    [19] ITU-T G. OWDM: multichannel WDM applications with single-channel optical interfaces in the O-band[S].
    [20] ITU-T G. OWDM2: alternative approach for multi-channel bi-directional MWDM applications with single-channel optical interfaces in the O-band, optimized for 5 km distances[S].
    [21] ITU-T G. 698.4: multichannel bi-directional DWDM applications with port agnostic single-channel optical interfaces[S].
    [22] YD/T 4013.4—2022: 城域N×25 Gbit/s波分复用(WDM)系统技术要求 第4部分: MWDM[S].

    YD/T 4013.4-2022: technical requirements for metropolitan N × 25 Gbit/s wavelength division multiplexing (WDM) systems Part 4: MWDM[S].
  • 加载中
图(12)
计量
  • 文章访问数:  175
  • HTML全文浏览量:  30
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-12
  • 修回日期:  2023-03-07
  • 网络出版日期:  2023-03-27

目录

    /

    返回文章
    返回