留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤矿井下无线电波防爆安全功率阈值研究

梁伟锋 孙继平 彭铭 潘涛 张高敏

梁伟锋,孙继平,彭铭,等. 煤矿井下无线电波防爆安全功率阈值研究[J]. 工矿自动化,2022,48(12):123-128, 163.  doi: 10.13272/j.issn.1671-251x.18045
引用本文: 梁伟锋,孙继平,彭铭,等. 煤矿井下无线电波防爆安全功率阈值研究[J]. 工矿自动化,2022,48(12):123-128, 163.  doi: 10.13272/j.issn.1671-251x.18045
LIANG Weifeng, SUN Jiping, PENG Ming, et al. Research on safe power threshold of radio wave explosion-proof in coal mine[J]. Journal of Mine Automation,2022,48(12):123-128, 163.  doi: 10.13272/j.issn.1671-251x.18045
Citation: LIANG Weifeng, SUN Jiping, PENG Ming, et al. Research on safe power threshold of radio wave explosion-proof in coal mine[J]. Journal of Mine Automation,2022,48(12):123-128, 163.  doi: 10.13272/j.issn.1671-251x.18045

煤矿井下无线电波防爆安全功率阈值研究

doi: 10.13272/j.issn.1671-251x.18045
基金项目: 国家重点研发计划项目(2016YFC0801800);中国科学院无线传感网与通信重点实验室开放课题(20190913)。
详细信息
    作者简介:

    梁伟锋(1984—),男,陕西扶风人,工程师,现从事煤矿生产技术、机电管理及智能化建设方面的工作,E-mail:liangweifeng17@163.com

  • 中图分类号: TD655

Research on safe power threshold of radio wave explosion-proof in coal mine

  • 摘要: 为防止煤矿井下无线设备发射的无线电波引起瓦斯爆炸,需限制煤矿井下无线电波的功率和能量。介绍了不同标准中规定的连续无线电波防爆安全功率阈值:① GB/T 3836.1—2021《爆炸性环境 第1部分:设备 通用要求》和国际标准IEC 60079-0:2017《Explosive atmospheres-Part 0:Equipment-General requirements》参考了欧洲标准CLC/TR 50427:2004《Assessment of inadvertent ignition of flammable atmospheres by radio-frequency radiation-Guide》的相关内容,省去了当爆炸性环境中不存在能作为接收天线的细长结构物体(如起重机)时,I类环境(代表性气体为甲烷)中连续无线电波防爆安全功率阈值为8 W这一条款,并不加区分地规定I类环境中连续无线电波防爆安全功率阈值为6 W;② 英国标准BS 6656:1991《Guide to prevention of inadvertent ignition of flammable atmospheres by radio-frequency radiation》规定I类环境中连续无线电波工作频率大于30 MHz时,无论是否有起重机等细长环形结构物体,连续无线电波防爆安全功率阈值均为8 W;③ 英国标准BS 6656:2002《Assessment of inadvertent ignition of flammable atmospheres by radio-frequency radiation-Guide》及欧洲标准CLC/TR 50427:2004均规定没有起重机等细长环形结构物体的I类环境中连续无线电波防爆安全功率阈值为8 W,有起重机等细长环形结构物体的I类环境中连续无线电波防爆安全功率阈值为6 W。分析了煤矿井下环境和设备特点:煤矿井下一般没有起重机;煤矿井下为受限空间,巷道较长,但巷道断面较小;沿巷道轴向敷设的电缆、水管、铁轨、钢丝绳、架空线、胶带架等轴向导体细长,但不会形成利于无线电波接收的环形天线;巷道工字钢支护等横向导体可以形成利于无线电波接收的环形天线,但工字钢导体截面大,不满足细长结构特征;综采工作面液压支架可以形成环形结构,但液压支架千斤顶将其分为多个环形结构,支架导体截面大,不满足细长结构特征。指出了煤矿井下连续无线电波防爆安全功率阈值没有执行6 W之前,漏泄、感应、透地、多基站等矿井无线通信系统已广泛应用煤矿井下,未见有引起瓦斯和煤尘爆炸事故的案例。因此,不加区分地将煤矿井下无线电波防爆安全功率阈值定为6 W,缺乏理论分析和实验验证。特别是5G,WiFi6,UWB,ZigBee等矿用移动通信系统及人员和车辆定位系统工作频率较高,因此煤矿井下连续无线电波防爆安全功率阈值应为8 W。

     

  • 图  1  起重机构成的环形结构

    Figure  1.  The annular structure composed of crane

    表  1  GB/T 3836.1—2021规定的连续无线电波防爆安全功率阈值

    Table  1.   Explosion-proof safety power threshold of continuous radio wave specified in GB/T 3836.1-2021

    设备类别连续无线电波防爆
    安全功率阈值/W
    热起燃时间
    (平均时间)/μs
    I6200
    IIA6100
    IIB3.580
    IIC220
    III6200
    下载: 导出CSV

    表  2  GB/T 3836.1—2021规定的脉冲式无线电波防爆安全能量阈值

    Table  2.   Explosion-proof safety energy threshold of pulsed radio wave specified in GB/T 3836.1-2021

    设备类别脉冲式无线电波防爆安全能量阈值/μJ
    I1 500
    IIA950
    IIB250
    IIC50
    III1 500
    下载: 导出CSV

    表  3  CLC/TR 50427:2004规定的不同爆炸性气体环境类别的代表性气体

    Table  3.   Representative gases of different types of explosive gas environments specified in CLC/TR 50427:2004

    环境类别代表性气体
    I甲烷
    IIA丙烷
    IIB乙烯
    IIC氢气
    下载: 导出CSV

    表  4  CLC/TR 50427:2004中规定的连续无线电波防爆安全功率阈值

    Table  4.   Explosion-proof safety power threshold of continuous radio wave specified in CLC/TR 50427:2004

    环境类别连续无线电波防爆
    安全功率阈值/W
    热起燃时间
    (平均时间)/μs
    I6(对于细长结构,例如起重机);

    8(对于其他所有结构)
    200
    IIA6100
    IIB3.580
    IIC220
    下载: 导出CSV

    表  5  BS 6656:1991中规定的不存在起重机时的连续无线电波防爆安全功率阈值

    Table  5.   Explosion-proof safety power threshold of continuous radio wave in the absence of crane as specified in BS 6656:1991

    环境类别连续无线电波防爆安全功率阈值/W
    I和IIA8
    IIB4
    IIC2
     注:假设源阻抗为3 000 Ω。
    下载: 导出CSV

    表  6  BS 6656:1991中规定的存在起重机时的连续无线电波防爆安全功率阈值

    Table  6.   Explosion-proof safety power threshold of continuous radio wave in the presence of crane as specified in BS 6656:1991

    环境类别连续无线电波防爆安全功率阈值/W
    I和IIA6
    IIB3.5
    IIC2
     注:假设源阻抗为7 500 Ω;连续无线电波工作频率为30 MHz以下。
    下载: 导出CSV
  • [1] EXCELL P S, BUTCHER G H, HOWSON D P. Towards a safety standard for radiofrequency hazards to flammable mixtures—progress and problems[C]. IEEE International Symposium on Electromagnetic Compatibility, San Diego, 1979: 1-5.
    [2] BURSTOW D J,LOVELAND R J,TOMLINSON R,et al. Radio frequency ignition hazards[J]. Radio and Electronic Engineer,1981,51(4):151-169. doi: 10.1049/ree.1981.0021
    [3] HOWSON D P,EXCELL P S,BUTCHER G H. Ignition of flammable gas/air mixtures by sparks from 2 MHz and 9 MHz sources[J]. Radio and Electronic Engineer,1981,51(4):170-174. doi: 10.1049/ree.1981.0022
    [4] ROSENFELD J L J,STRACHAN D C,TROMANS P S,et al. Experiments on the incendivity of radio-frequency,breakflash discharges (1.8-21 MHz c. w. )[J]. Radio and Electronic Engineer,1981,51(4):175-186. doi: 10.1049/ree.1981.0023
    [5] MADDOCKS A J,JACKSON G A. Measurements of radio frequency voltage and power induced in structures on the St Fergus gas terminals[J]. Radio and Electronic Engineer,1981,51(4):187-194. doi: 10.1049/ree.1981.0024
    [6] ROBERTSON S S J,LOVELAND R J. Radio-frequency ignition hazards:a review[J]. Physical Science,Measurement and Instrumentation,Management and Education-Reviews,IEE Proceedings A,1981,128(9):607-614.
    [7] EXCELL P S,MADDOCKS A J. Assessment of worst-case receiving antenna characteristics of metallic industrial structures. Part 1:Electrically-small structures[J]. Journal of the Institution of Electronic and Radio Engineers,1986,56(1):27-32. doi: 10.1049/jiere.1986.0006
    [8] EXCELL P S,HOWSON D P. Assessment of worst-case receiving antenna characteristics of metallic industrial structures. Part 2:Electrically-large structures[J]. Journal of the Institution of Electronic and Radio Engineers,1986,56(1):33-36. doi: 10.1049/jiere.1986.0008
    [9] JAMES R A,EXCELL P S,KELLER A Z. Probabilistic factors in radio-frequency ignition and detonation hazards analyses[J]. Reliability Engineering,1987,17(2):139-153. doi: 10.1016/0143-8174(87)90012-6
    [10] EXCELL P S,JAMES R A,KELLER A Z. Strategic problems in the drafting and implementation of safety guides for the prevention of radio frequency radiation hazards[J]. International Journal of Quality & Reliability Management,1988,5(5):47-61.
    [11] 孙继平,贾倪. 矿井电磁波能量安全性研究[J]. 中国矿业大学学报,2013,42(6):1002-1008. doi: 10.3969/j.issn.1000-1964.2013.06.018

    SUN Jiping,JIA Ni. Safety study of electromagnetic wave energy in coal mine[J]. Journal of China University of Mining & Technology,2013,42(6):1002-1008. doi: 10.3969/j.issn.1000-1964.2013.06.018
    [12] 刘晓阳,马新彦,刘坤,等. 矿井5G电磁波辐射能量安全性研究[J]. 工矿自动化,2021,47(7):85-91. doi: 10.13272/j.issn.1671-251x.2020090050

    LIU Xiaoyang,MA Xinyan,LIU Kun,et al. Research on the safety of 5G electromagnetic wave radiation energy in coal mine[J]. Industry and Mine Automation,2021,47(7):85-91. doi: 10.13272/j.issn.1671-251x.2020090050
    [13] MENG Jijian. Research on wireless power transmission in coal mine based on explosion-proof safety[C]. IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference, Chongqing, 2021: 1700-1704.
    [14] 郑小磊,梁宏. 煤矿5G通信系统安全技术要求和检验方法[J]. 工矿自动化,2021,47(3):9-13,33. doi: 10.13272/j.issn.1671-251x.2021010066

    ZHENG Xiaolei,LIANG Hong. Safety technical requirements and inspection methods of coal mine 5G communication system[J]. Industry and Mine Automation,2021,47(3):9-13,33. doi: 10.13272/j.issn.1671-251x.2021010066
    [15] 张勇. 煤矿井下无线射频近场谐振耦合防爆电磁能仿真分析[J]. 煤矿安全,2022,53(8):134-138. doi: 10.13347/j.cnki.mkaq.2022.08.021

    ZHANG Yong. Simulation analysis of explosion-proof electromagnetic energy coupled with radio frequency near field resonance in underground coal mine[J]. Safety in Coal Mines,2022,53(8):134-138. doi: 10.13347/j.cnki.mkaq.2022.08.021
  • 加载中
图(1) / 表(6)
计量
  • 文章访问数:  234
  • HTML全文浏览量:  39
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-14
  • 修回日期:  2022-12-14
  • 网络出版日期:  2022-12-23

目录

    /

    返回文章
    返回