留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤矿井下无线电波对人体的影响

丁序海 潘涛 彭铭 张高敏

丁序海,潘涛,彭铭,等. 煤矿井下无线电波对人体的影响[J]. 工矿自动化,2022,48(11):84-92, 144.  doi: 10.13272/j.issn.1671-251x.18044
引用本文: 丁序海,潘涛,彭铭,等. 煤矿井下无线电波对人体的影响[J]. 工矿自动化,2022,48(11):84-92, 144.  doi: 10.13272/j.issn.1671-251x.18044
DING Xuhai, PAN Tao, PENG Ming, et al. Influence of underground radio wave on human body in coal mine[J]. Journal of Mine Automation,2022,48(11):84-92, 144.  doi: 10.13272/j.issn.1671-251x.18044
Citation: DING Xuhai, PAN Tao, PENG Ming, et al. Influence of underground radio wave on human body in coal mine[J]. Journal of Mine Automation,2022,48(11):84-92, 144.  doi: 10.13272/j.issn.1671-251x.18044

煤矿井下无线电波对人体的影响

doi: 10.13272/j.issn.1671-251x.18044
基金项目: 国家重点研发计划项目(2016YFC0801800);中国科学院无线传感网与通信重点实验室开放课题(20190913)。
详细信息
    作者简介:

    丁序海(1972—),男,山东黄县人,高级工程师,现从事煤矿管理和智能化建设方面的工作,E-mail:13808934513@139.com

  • 中图分类号: TD655

Influence of underground radio wave on human body in coal mine

  • 摘要: 5G,WiFi6,UWB,ZigBee等矿井移动通信系统及人员和车辆定位系统等发射的较大功率无线电波会影响煤矿井下作业人员健康,因此,需要研究煤矿井下无线电波对人体的影响。研究了电磁辐射对人体的作用:人体不同部位对电磁辐射吸收能力不同,电磁辐射对人体头部的影响最大。无线电波发射功率限值包括职业暴露限值和公众暴露限值两大类。职业暴露是指作业人员在电磁辐射环境中暴露时间不大于8 h。煤矿井下作业人员的工作时间为每班工作8 h(3班倒)或每班工作6 h(4班倒),因此,煤矿井下无线电波发射功率限值应选择全身职业暴露无线电波发射功率最小的限值6.28 W。为防止煤矿井下无线电波发射引起瓦斯爆炸,GB/T 3836.1—2021《爆炸性环境 第1部分:设备 通用要求》规定煤矿井下无线电波发射功率不大于6 W。因此,取得防爆合格证和矿用安全标志准用证的5G,WiFi6,UWB,ZigBee等矿井移动通信系统及人员和车辆定位系统等,在保证无线发射天线距固定岗位人员大于1 m的条件下,不会对煤矿井下作业人员造成伤害。

     

  • 表  1  现有不同标准的SAR限值

    Table  1.   SAR limits of existing standards

    标准名称暴露类型频率范围全局SAR限值/
    (W·kg−1
    局部SAR限值
    (头部和躯干)/(W·kg−1
    局部SAR限值
    (四肢)/(W·kg−1
    IEEE Std C95.1—2019职业暴露100 kHz~6 GHz0.41020
    公众暴露100 kHz~6 GHz0.0824
    ICNIRP 2020指南职业暴露100 kHz~6 GHz0.41020
    6~300 GHz0.4
    公众暴露100 kHz~6 GHz0.0824
    6~300 GHz0.08
    GB 21288—2007公众暴露30 MHz~6 GHz2
    GB 21288—2020(报批稿)职业暴露100 kHz~6 GHz1020
    公众暴露100 kHz~6 GHz24
    下载: 导出CSV

    表  2  GB 9175—1988规定的电场强度和功率密度限值

    Table  2.   Limits for electric field strength and power density specified in GB 9175-1988

    暴露等级频率范围电场强度/
    (V·m−1
    功率密度/
    (W·m−2
    一级(安全区)0.1~30 MHz10
    30~300 MHz5
    300 MHz~300 GHz0.1
    二级(中间区)0.1~30 MHz25
    30~300 MHz12
    300 MHz~300 GHz0.4
    下载: 导出CSV

    表  3  GB 8702—1988规定的电场强度、磁场强度和功率密度限值

    Table  3.   Limits for electric field strength, magnetic field strength and power density specified in GB 8702-1988

    暴露类型频率范围电场强度/
    (V·m−1
    磁场强度/
    (A·m−1
    功率密度/
    (W·m−2
    职业暴露0.1~3 MHz870.2520
    3~30 MHz$150/\sqrt f $$0.4/\sqrt f $$60/f$
    30~3 000 MHz280.0752
    3~15 GHz$0.5\sqrt f $$0.001\;5\sqrt f$$f/1\;500$
    15~300 GHz610.1610
    公众暴露0.1~3 MHz400.140
    3~30 MHz$67\sqrt f $$0.17\sqrt f $$12/f$
    30~3 000 MHz120.0320.4
    3~15 GHz$0.22\sqrt f $$0.001\sqrt f $$f/7\;500$
    15~300 GHz270.0732
     注:f为频率,MHz。
    下载: 导出CSV

    表  4  GB 10437—1989规定的电场强度和功率密度限值

    Table  4.   Limits for electric field strength and power density specified in GB 10437-1989

    波类型频率范围日暴露时间/h电场强度/
    (V·m−1
    功率密度/
    (W·m−2
    连续波30~300 MHz4191
    8140.5
    脉冲波30~300 MHz4140.5
    8100.25
    下载: 导出CSV

    表  5  GB 10436—1989规定的功率密度限值

    Table  5.   Limits for power density specified in GB 10436-1989

    波类型频率范围日暴露时间功率密度/
    (W·m−2
    连续波和脉冲波
    (非固定辐射)
    300 MHz~300 GHz8 h0.5
    小于或大于8 h4/t
    脉冲波
    (固定辐射)
    300 MHz~300 GHz8 h0.25
    小于或大于8 h2/t
     注:t为日暴露时间,h;短时间暴露最高功率密度一般不超过10 W/m2,若大于该值需使用个人防护,且不得大于50 W/m2
    下载: 导出CSV

    表  6  GB 12638—1990规定的电场强度和功率密度限值

    Table  6.   Limits for electric field strength and power density specified in GB 12638-1990

    波类型频率范围日暴露时间电场强度/
    (V·m−1
    功率密度/
    (W·m−2
    连续波30 MHz~
    300 GHz
    8 h140.5
    小于或大于8 h4/t且不超过40
    脉冲波30 MHz~
    300 GHz
    8 h100.25
    小于或大于8 h2/t且不超过20
    下载: 导出CSV

    表  7  GY 5054—1995规定的电场强度、磁场强度和功率密度限值

    Table  7.   Limits for electric field strength, magnetic field strength and power density specified in GY 5054-1995

    暴露类型频率范围电场强度/
    (V·m−1
    磁场强度/
    (A·m−1
    功率密度/
    (W·m−2
    职业暴露
    (8 h工作时间内)
    0.1~3 MHz870.2520
    3~30 MHz$150/\sqrt f $$0.4/\sqrt f $$60/f$
    30~3 000 MHz280.0752
    3~15 GHz$0.5\sqrt f $$0.001\;5\sqrt f$$f/1\;500$
    15~300 GHz610.1610
    公众暴露
    (24 h内)
    0.1~3 MHz400.14
    3~30 MHz$67/\sqrt f $$0.17/\sqrt f $$12/f$
    30~3 000 MHz120.0320.4
    3~15 GHz$0.22\sqrt f $$0.001\sqrt f $$f/7\;500$
    15~300 GHz270.0732
    下载: 导出CSV

    表  8  GB 8702—2014规定的电场强度、磁场强度、磁感应强度和功率密度限值

    Table  8.   Limits for electric field strength, magnetic field strength, magnetic induction strength and power density specified in GB 8702-2014

    频率范围电场强度/
    (V·m−1
    磁场强度/
    (A·m−1
    磁感应
    强度/μT
    功率密度/
    (W·m−2
    1~8 Hz8 000$32\;000/{f^2}$$40\;000/{f^2}$
    8~25 Hz8 000$4\;000/f$$5\;000/f$
    0.025~1.2 kHz$200/f$$4/f$$5/f$
    1.2~2.9 kHz$200/f$3.34.1
    2.9~57 kHz70$10/f$$12/f$
    57~100 kHz$4\;000/f$$10/f$$12/f$
    0.1~3 MHz400.10.124
    3~30 MHz$67/{f^{0.5}}$$0.17/{f^{0.5}}$$0.21/{f^{0.5}}$$12/f$
    30~3 000 MHz120.0320.040.4
    3~15 GHz$0.22{f^{0.5}}$$0.000\;59{f^{0.5} }$$0.000\;74{f^{0.5} }$$f/7\;500$
    15~300 GHz270.0730.0922
     注:f单位为频率范围对应单位。
    下载: 导出CSV

    表  9  GJB 5313A—2017规定的电场强度和功率密度限值

    Table  9.   Limits for electric field strength and power density specified in GJB 5313A-2017

    暴露类型频率范围电场强度/
    (A·m−1
    功率密度/
    (W·m−2
    作业区短时间
    (<1 h)暴露
    100 kHz~3.5 MHz170
    3.5~10 MHz$610/f$
    10~400 MHz6110
    400~2 000 MHz$3{f^{0.5}}$$f/40$
    2~300 GHz13750
    作业区连续波
    8 h暴露
    0.1~3 MHz47.76
    3~30 MHz$82.5/{f^{0.5}}$$18/f$
    30~3 000 MHz150.6
    3~10 GHz$0.274{f^{0.5}}$$f/5\;000$
    10~300 GHz27.42
    生活区短时间
    (<1 h)暴露
    0.1~3 MHz404
    3~30 MHz$67/{f^{0.5}}$$12/f$
    30~3 000 MHz120.4
    3~15 GHz$0.22{f^{0.5}}$$f/7\;500$
    15~300 GHz272
    生活区日暴露0.1~3 MHz33.83
    3~30 MHz$58.5/{f^{0.5}}$$9/f$
    30~3 000 MHz10.60.3
    3~10 GHz$0.194{f^{0.5}}$$f/10\;000$
    10~300 GHz19.41
    下载: 导出CSV

    表  10  IEEE Std C95.1—2019规定的电场强度、磁场强度和功率密度限值

    Table  10.   Limits for electric field strength, magnetic field strength and power density specified in IEEE Std C95.1-2019

    暴露类型频率范围电场强度/(V·m−1磁场强度/(A·m−1基于电场强度的
    功率密度/(W·m−2
    基于磁场强度的
    功率密度/(W·m−2
    公众暴露(全身)0.1~1.34 MHz614$16.3/f$1 000$100\;000/{f^2}$
    1.34~30 MHz$823.8/f$$16.3/f$$1\;800/{f^2}$$100\;000/{f^2}$
    30~100 MHz27.5$158.3/{f^{1.668}}$2$9\;400\;000/{f^{3.336} }$
    100~400 MHz27.50.072922
    400~2 000 MHz$f/200$$f/200$
    2~300 GHz1010
    职业暴露(全身)0.1~1 MHz1 842$16.3/f$9 000$100\;000/{f^2}$
    1~30 MHz$1\;842/f$$16.3/f$$9\;000/{f^2}$$100\;000/{f^2}$
    30~100 MHz61.4$16.3/f$10$100\;000/{f^2}$
    100~400 MHz61.40.1631010
    400~2 000 MHz$f/40$$f/40$
    2~300 GHz5050
    公众暴露(局部)0.1~1.34 MHz1 373$36.4/f$5 000$500\;000/{f^2}$
    1.34~30 MHz$1\;842/f$$36.4/f$$9\;000/{f^2}$$500\;000/{f^2}$
    30~100 MHz61.4$353/{f^{1.668}}$10$47\;000\;000/{f^{3.336} }$
    100~400 MHz$21.2{f^{0.232}}$$0.056\;2{f^{0.232} }$$1.19{f^{0.463}}$$1.19{f^{0.463}}$
    400~2 000 MHz$1.19{f^{0.463}}$$1.19{f^{0.463}}$
    2~6 GHz4040
    6~300 GHz$55{(f/1\;000)^{ - 0.177} }$$55{(f/1\;000)^{ - 0.177} }$
    300 GHz2020
    职业暴露(局部)0.1~1 MHz4 119$36.4/f$45 000$500\;000/{f^2}$
    1~30 MHz$4\;119/f$$36.4/f$$45\;000/{f^2}$$500\;000/{f^2}$
    30~100 MHz137.3$36.4/f$50$500\;000/{f^2}$
    100~400 MHz$47.3{f^{0.232}}$$0.125{f^{0.232}}$$5.93{f^{0.463}}$$5.93{f^{0.463}}$
    400~2 000 MHz$5.93{f^{0.463}}$$5.93{f^{0.463}}$
    2~6 GHz200200
    6~300 GHz$274.8{(f/1\;000)^{ - 0.177} }$$274.8{(f/1\;000)^{ - 0.177} }$
    300 GHz100100
    下载: 导出CSV

    表  11  ICNIPR 2020指南规定的电场强度、磁场强度和功率密度限值

    Table  11.   Limits for electric field strength, magnetic field strength and power density specified in ICNIPR 2020 guideline

    暴露类型频率范围电场强度/
    (V·m−1
    磁场强度/
    (A·m−1
    功率密度/
    (W·m−2
    公众暴露
    (全身)
    0.1~30 MHz$300/{f^{0.7}}$$2.2/f$
    30~400 MHz27.70.0732
    400~2 000 MHz$1.375{f^{0.5}}$$0.003\;7{f^{0.5} }$$f/200$
    2~300 GHz10
    职业暴露
    (全身)
    0.1~30 MHz$660/{f^{0.7}}$$4.9/f$
    30~400 MHz610.1610
    400~2 000 MHz$3{f^{0.5}}$$0.008{f^{0.5}}$$f/40$
    2~300 GHz50
    公众暴露
    (局部)
    0.1~30 MHz$671/{f^{0.7}}$$4.9/f$
    30~400 MHz620.16310
    400~2 000 MHz$4.72{f^{0.43}}$$0.012\;3{f^{0.43} }$$0.058{f^{0.86}}$
    2~6 GHz40
    6~300 GHz$55/{(f/1\;000)^{0.177} }$
    300 GHz20
    职业暴露
    (局部)
    0.1~30 MHz$1\;504/{f^{0.7} }$$10.8/f$
    30~400 MHz1390.3650
    400~2 000 MHz$10.58{f^{0.43}}$$0.027\;4{f^{0.43} }$$0.29{f^{0.86}}$
    2~6 GHz200
    6~300 GHz$275/{(f/1\;000)^{0.177} }$
    300 GHz100
    下载: 导出CSV

    表  12  基于现有标准计算得到的无线电波发射功率限值

    Table  12.   Radio wave emission power limits calculated based on existing standards

    标准名称暴露类型最小功率密度
    限值/(W·m−2
    发射功率
    限值/W
    GB 9175—1988一级(安全区)0.11.25
    二级(中间区)0.45
    GB 8702—1988职业暴露(8 h)225.12
    公众暴露(24 h)0.45
    GB 10437—1989连续波(8 h)0.56.28
    脉冲波(8 h)0.253.14
    GB 10436—1989连续波和脉冲波
    (非固定辐射)(8 h)
    0.56.28
    脉冲波(固定辐射)(8 h)0.253.14
    GB 12638—1990连续波(8 h)0.56.28
    脉冲波(8 h)0.253.14
    GY 5054—1995职业暴露(8 h)225.12
    公众暴露(24 h)0.45
    GB 8702—2014公众暴露0.45
    GJB 5313A—2017作业区短时间
    (<1 h)暴露
    10125.6
    作业区连续波8 h暴露0.67.5
    生活区短时间
    (<1 h)暴露
    0.45
    生活区日暴露0.33.77
    IEEE Std C95.1—2019
    和ICNIPR 2020指南
    公众暴露(全身)225.12
    职业暴露(全身)10125.6
    公众暴露(局部)10125.6
    职业暴露(局部)50628
    下载: 导出CSV
  • [1] 陈鹏,贾刚. 矿井电磁环境对人体作用的研究[J]. 中国辐射卫生,2010,19(1):60-62.

    CHEN Peng,JIA Gang. Study on the effect of mine electromagnetic environment on human body[J]. Chinese Journal of Radiological Health,2010,19(1):60-62.
    [2] 孙继平. 矿井宽带无线传输技术研究[J]. 工矿自动化,2013,39(2):1-5. doi: 10.7526/J.ISSN.1671-251X.2013.02.001

    SUN Jiping. Research of mine wireless broadband transmission technology[J]. Industry and Mine Automation,2013,39(2):1-5. doi: 10.7526/J.ISSN.1671-251X.2013.02.001
    [3] 孙继平. 煤矿信息化与自动化发展趋势[J]. 工矿自动化,2015,41(4):1-5.

    SUN Jiping. Development trend of coal mine informatization and automation[J]. Industry and Mine Automation,2015,41(4):1-5.
    [4] 孙继平. 煤矿信息化自动化新技术与发展[J]. 煤炭科学技术,2016,44(1):19-23,83.

    SUN Jiping. New technology and development of mine informatization and automation[J]. Coal Science and Technology,2016,44(1):19-23,83.
    [5] 孙继平. 煤矿机器人电气安全技术研究[J]. 煤炭科学技术,2019,47(4):1-6.

    SUN Jiping. Research on electrical safety technology of coal mine robot[J]. Coal Science and Technology,2019,47(4):1-6.
    [6] ICNIRP. Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz)[J]. Health Physics,2020,118(5):483-524. doi: 10.1097/HP.0000000000001210
    [7] GB 21288—2007 移动电话电磁辐射局部暴露限值[S].

    GB 21288-2007 Limits for human local exposure to electromagnetic fields emitted by mobile phones[S].
    [8] KAUR B, SINGH S, KUMAR J. A study of SAR pattern in biological tissues due to RF exposure[C]. The 2nd International Conference on Recent Advances in Engineering & Computational Sciences, Chandigarh, 2015: 1-5.
    [9] 禹忠,吴光绪,谢永斌,等. 5G移动通信频率对人体比吸收率仿真[J]. 西安邮电大学学报,2019,24(3):1-6.

    YU Zhong,WU Guangxu,XIE Yongbin,et al. Simulation of specific absorption rate of 5G mobile electromagnetic sadiation[J]. Journal of Xi'an University of Posts and Telecommunications,2019,24(3):1-6.
    [10] 赵雪龙,王长振,周红梅,等. P−X频段微波暴露人体比吸收率(SAR)仿真研究[J]. 微波学报,2020,36(增刊1):420-423.

    ZHAO Xuelong,WANG Changzhen,ZHOU Hongmei,et al. Simulation on specific absorption rate(SAR) of human body exposed to P-X band microwave[J]. Journal of Microwaves,2020,36(S1):420-423.
    [11] 杜丹,李静,苗霞,等. 1~6 GHz射频暴露平台的设计及剂量特征[J]. 辐射研究与辐射工艺学报,2022,40(4):68-74.

    DU Dan,LI Jing,MIAO Xia,et al. Design and dose characteristics of 1-6 GHz radio frequency exposure platform[J]. Journal of Radiation Research and Radiation Processing,2022,40(4):68-74.
    [12] EXCELL P S. Computer modelling of high frequency electromagnetic field penetration into the human head[J]. Measurement and Control:Journal of the Institute of Measurement and Control,1998,31(6):170-175.
    [13] ABD-ALHAMEED R A,EXCELL P S,MANGOUD M A. Computation of specific absorption rate in the human body due to base-station antennas using a hybrid formulation[J]. IEEE Transactions on Electromagnetic Compatibility,2005,47(2):374-381. doi: 10.1109/TEMC.2005.847395
    [14] 侯建强,牛中奇,陈建华,等. 手机辐射与人体头颅相互作用的仿真分析[J]. 中国生物医学工程学报,2009,28(5):713-718. doi: 10.3969/j.issn.0258-8021.2009.05.014

    HOU Jianqiang,NIU Zhongqi,CHEN Jianhua,et al. The simulation analysis of the interaction between human head and radiation of cell phone[J]. Chinese Journal of Biomedical Engineering,2009,28(5):713-718. doi: 10.3969/j.issn.0258-8021.2009.05.014
    [15] 黄子健,倪建平,孟萃,等. 人体头部吸收手机及无线路由器辐射的FDTD仿真[J]. 安全与电磁兼容,2015(1):65-67. doi: 10.3969/j.issn.1005-9776.2015.01.013

    HUANG Zijian,NI Jianping,MENG Cui,et al. FDTD simulation of human head absorption radiated from mobile phone and wireless router[J]. Safety & EMC,2015(1):65-67. doi: 10.3969/j.issn.1005-9776.2015.01.013
    [16] 白杨,左胜,张玉,等. 基于高阶有限元方法的人体头部比吸收率分析[J]. 微波学报,2019,35(1):79-82.

    BAI Yang,ZUO Sheng,ZHANG Yu,et al. Analysis of human head specific absorption rate based on the higher order finite element method[J]. Journal of Microwaves,2019,35(1):79-82.
    [17] 张一凡,张洪欣. 微波传能发射系统电磁辐射安全性研究[J]. 电波科学学报,2019,34(4):416-421. doi: 10.13443/j.cjors.2018110901

    ZHANG Yifan,ZHANG Hongxin. Safety of microwave transmission energy electromagnetic environment[J]. Chinese Journal of Radio Science,2019,34(4):416-421. doi: 10.13443/j.cjors.2018110901
    [18] ZRADZIŃSKI P,KARPOWICZ J,GRYZ K,et al. Modelling the influence of electromagnetic field on the user of a wearable IoT device used in a WSN for monitoring and reducing hazards in the work environment[J]. Sensors,2020,20(24):7131. doi: 10.3390/s20247131
    [19] 陈登鹏,逯迈. 5G手机天线辐照特性及其在人体头部中温度场分布[J]. 辐射研究与辐射工艺学报,2021,39(3):75-90.

    CHEN Dengpeng,LU Mai. Exposure characteristics of 5G mobile phone antenna and its temperature field distribution in the human head[J]. Journal of Radiation Research and Radiation Processing,2021,39(3):75-90.
    [20] 中国科协学会服务中心. 5G电磁辐射与健康[M]. 北京: 中国科学技术出版社, 2020: 83-106.

    Service Center of China Association for Science and Technology. 5G electromagnetic radiation and health[M]. Beijing: Science and Technology of China Press, 2020: 83-106.
    [21] MARY T A J, PRIYADARSHINI S J, RAVICHANDRAN C S, et al. Analysis of SAR on human head modeling in metallic enclosures[C]. IEEE International Conference on Computational Intelligence and Computing Research, Coimbatore, 2010: 1-4.
    [22] SIMBA A Y,WATANABE S,HIKAGE T,et al. Experimental and numerical investigation of the maximum specific absorption rate in a spherical phantom when operating a mobile phone near a metallic wall[J]. IET Science,Measurement & Technology,2011,5(6):225-230.
    [23] LEUNG S W,DIAO Yinliang,CHAN K H,et al. Specific absorption rate evaluation for passengers using wireless communication devices inside vehicles with different handedness,passenger counts,and seating locations[J]. IEEE Transactions on Biomedical Engineering,2012,59(10):2905-2912. doi: 10.1109/TBME.2012.2210553
    [24] LAZARESCU C, DAVID V, NICA I, et al. Walls effect over the specific absorbtion rate in the human head due to mobile phone exposure[C]. International Conference and Exposition on Electrical and Power Engineering, Iasi, 2012: 560-564.
    [25] 周文颖,逯迈. 地铁专用无线通信系统射频电磁暴露安全的评估[J]. 辐射研究与辐射工艺学报,2018,36(4):48-56.

    ZHOU Wenying,LU Mai. Safety evaluation of radio frequency electromagnetic exposure from wireless communication system of subway[J]. Journal of Radiation Research and Radiation Processing,2018,36(4):48-56.
    [26] LI Jin,LU Mai. Safety assessment of electromagnetic exposure for adult and child passengers standing on the subway platform[J]. Archives of Electrical Engineering,2022,71(3):755-773.
    [27] ASHRAF M A,MAHMOOD A,MAHBOOB M A. Numerical evaluation of specific absorption rate in human head and torso for wearable wireless devices in underground mine scenarios[J]. Radiation Protection Dosimetry,2022,198(8):491-502. doi: 10.1093/rpd/ncac082
  • 加载中
表(12)
计量
  • 文章访问数:  179
  • HTML全文浏览量:  48
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-14
  • 修回日期:  2022-11-17
  • 网络出版日期:  2022-11-23

目录

    /

    返回文章
    返回