留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤矿井下无线传输分析方法

邵水才 郭旭东 彭铭 张高敏

邵水才,郭旭东,彭铭,等. 煤矿井下无线传输分析方法[J]. 工矿自动化,2022,48(10):123-128.  doi: 10.13272/j.issn.1671-251x.18038
引用本文: 邵水才,郭旭东,彭铭,等. 煤矿井下无线传输分析方法[J]. 工矿自动化,2022,48(10):123-128.  doi: 10.13272/j.issn.1671-251x.18038
SHAO Shuicai, GUO Xudong, PENG Ming, et al. Coal mine underground wireless transmission analysis method[J]. Journal of Mine Automation,2022,48(10):123-128.  doi: 10.13272/j.issn.1671-251x.18038
Citation: SHAO Shuicai, GUO Xudong, PENG Ming, et al. Coal mine underground wireless transmission analysis method[J]. Journal of Mine Automation,2022,48(10):123-128.  doi: 10.13272/j.issn.1671-251x.18038

煤矿井下无线传输分析方法

doi: 10.13272/j.issn.1671-251x.18038
基金项目: 国家重点研发计划资助项目(2016YFC0801800)。
详细信息
    作者简介:

    邵水才(1969—),男,陕西蒲城人,教授级高级工程师,硕士,主要从事煤炭企业现代化管理及智能化方面的工作,E-mail:18002000@ceic.com

  • 中图分类号: TD655

Coal mine underground wireless transmission analysis method

  • 摘要: 目前,矿井移动通信系统、人员和车辆定位系统设计和规划主要靠经验和现场测试,存在工作量大、通信基站和定位分站布置及其天线设置难以优化等问题。为促进煤矿井下无线传输分析方法在矿井移动通信系统、人员和车辆定位系统设计和规划,以及通信基站和定位分站布置及其天线设置中的应用,分析了不同煤矿井下无线传输分析方法适用范围和优缺点:① 抛物方程法具有算法简单、所需计算内存资源量较小等优点,但不适用于分析巷道起伏、支护、纵向导体和横向导体等因素对矿井无线传输衰减的影响。② 时域有限差分法适用范围较广,但需较大的计算内存资源量,分析巷道弯曲、起伏、断面形状不规则等因素对矿井无线传输衰减的影响时,误差较大。③ 有限元法适用范围最广,可以采用四面体网格,相比于时域有限差分法中使用的六面体网格,可以更好地拟合不规则结构巷道,但所需计算内存资源量最大,现有高档服务器内存容量难以满足需求,适用于小断面、短距离、低频率煤矿井下无线传输分析。④ 射线追踪法具有算法简单、所需计算内存资源量最小等优点,但适用范围小,仅适用于分析高频段无线工作频率、断面形状、围岩介质、巷道弯曲等因素对矿井无线传输衰减的影响,不能分析天线在巷道断面不同位置、巷道分支、巷道起伏、支护、纵向导体和横向导体等因素对矿井无线传输衰减的影响,并且在分析低频段无线工作频率对矿井无线传输衰减的影响时,误差大。⑤ 统计分析法具有简单易用的优点,但需要大量实测数据,而煤矿井下巷道种类多、环境复杂,存在分支、弯曲和起伏等,测量工作量大,效率低,难以测量煤矿井下不同巷道和支护等条件下无线传输衰减数据,难以分析无线工作频率、天线在巷道断面不同位置、巷道断面面积和形状、巷道弯曲、巷道分支、巷道起伏、围岩介质、支护、纵向导体、横向导体等因素对煤矿井下无线传输衰减的影响。

     

  • 图  1  煤矿井下无线传输分析方法

    Figure  1.  Coal mine underground wireless transmission analysis method

    表  1  煤矿井下无线传输分析方法对比

    Table  1.   Comparison of analysis methods of wireless transmission in underground coal mine

    方法概述优点缺点
    抛物方程法 对波动方程在特定方向进行近似求解的方法 算法原理简单,所需计算内存资源量较小 不适用于分析巷道起伏、支护、纵向导体和横向导体等因素对矿井无线传输衰减的影响
    时域有限差分法 将待求解区域按空间进行划分,并按时间顺序对电场分量和磁场分量进行逐步推进求解的方法 原理相对简单,采用的六面体网格剖分容易,适用范围较广 需要较大的计算内存资源量,且分析巷道弯曲、起伏、断面形状不规则等因素对矿井无线传输衰减的影响时,误差较大
    有限元法 通过变分原理将麦克斯韦方程转换为泛函极值问题,并进行剖分插值求解的方法 采用的四面体网格可以较好地拟合各种不规则结构的巷道,适用范围最广 所需计算内存资源量最大,仅适用于小断面、短距离、低频率煤矿井下无线传输分析
    射线追踪法 基于几何光学理论,将高频电磁波近似为射线的方法 算法简单,所需计算内存资源量最小 仅适用于分析高频段无线工作频率、断面形状、围岩介质、巷道弯曲等因素对矿井无线传输衰减的影响,不能分析天线在巷道断面不同位置、巷道分支、巷道起伏、支护、纵向导体和横向导体等因素对矿井无线传输衰减的影响,且分析低频段无线工作频率对矿井无线传输衰减的影响时,误差大
    统计分析法 利用统计学原理对现场实际测量数据进行归纳总结,并进行数值分析的方法 简单易用 现场测量工作量大,效率低,适用范围小,无法应用于分析无线工作频率、天线在巷道断面不同位置、巷道断面面积和形状、巷道弯曲、巷道分支、巷道起伏、围岩介质、支护、纵向导体、横向导体等因素对矿井无线传输衰减的影响
    下载: 导出CSV
  • [1] BERNARDI P,CARATELLI D,CICCHETTI R,et al. A numerical scheme for the solution of the vector parabolic equation governing the radio wave propagation in straight and curved rectangular tunnels[J]. IEEE Transactions on Antennas and Propagation,2009,57(10):3249-3257. doi: 10.1109/TAP.2009.2027142
    [2] MARTELLY R,JANASWAMY R. Modeling radio transmission loss in curved,branched and rough-walled tunnels with the ADI−PE method[J]. IEEE Transactions on Antennas and Propagation,2010,58(6):2037-2045. doi: 10.1109/TAP.2010.2046862
    [3] ZHANG Xingqi,SARRIS C D. Statistical modeling of electromagnetic wave propagation in tunnels with rough walls using the vector parabolic equation method[J]. IEEE Transactions on Antennas and Propagation,2019,67(4):2645-2654. doi: 10.1109/TAP.2019.2894285
    [4] LI Yusheng,BIAN Yuqian,HE Zi,et al. EM pulse propagation modeling for tunnels by three-dimensional ADI-TDPE method[J]. IEEE Access,2020,8:85027-85037. doi: 10.1109/ACCESS.2020.2991205
    [5] QIN Hao, ZHANG Xingqi. Efficient modeling of radio wave propagation in tunnels for 5G and beyond using a split-step parabolic equation method[C]. 2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science(URSI GASS), Rome, 2021: 1-3.
    [6] YEE K. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation,1966,14(3):302-307. doi: 10.1109/TAP.1966.1138693
    [7] 盛新庆. 计算电磁学要论[M]. 3版. 北京: 科学出版社, 2018.

    SHENG Xinqing. Essentials of computational electromagnetics[M]. 3rd ed. Beijing: Science Press, 2018.
    [8] HADI M F, MAHMOUD S F. Modeling wireless propagation in a rectangular tunnel with the Compact-FDTD method[C]. 2008 IEEE Radio and Wireless Symposium, Orlando, 2008: 339-342.
    [9] ZHAO Jingjing, LIU Yawen, CHEN Bin, et al. Study on the impact of metallic door on the field cross-section distribution of the EMP propagation in tunnel with parallel implementation[C]. The 4th IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, Beijing, 2011: 754-757.
    [10] LIU Yawen, CHEN Yiwang, ZHANG Pin, et al. Study on the field cross-section distribution of the EMP propagation in vaulted tunnel with parallel implementation[C]. International Conference on Microwave and Millimeter Wave Technology, Shenzhen, 2012: 1-4.
    [11] RANA M M, ANWAR M S, MOTIN M A. Segmentation technique with ADI-FDTD for EM propagation modeling in electrically large structure[C]. International Conference on Electrical Engineering and Information & Communication Technology, Dhaka, 2014: 1-4.
    [12] ZHOU Chenming, JACKSHA R. Radio propagation analysis in mines and tunnels based on FDTD[C]. The 31st International Review of Progress in Applied Computational Electromagnetics, Williamsburg, 2015: 1-2.
    [13] LI Dawei, WANG Jianlai, TIAN Guansuo, et al. An efficient algorithm based on the equivalence principle and FDTD for wave propagation prediction in tunnels[C]. International Applied Computational Electromagnetics Society Symposium-China, Beijing, 2018: 1-2.
    [14] MAO Y F,WU H B,CHEN J H,et al. ASM-FDTD combine the Prony's method to simulate the EMP propagation in tunnel[J]. The Applied Computational Electromagnetics Society Journal,2019:1821-1828.
    [15] 孙继平,张长森. 列车对梯形隧道中电磁波截止频率的影响[J]. 微波学报,2002,18(4):76-79. doi: 10.3969/j.issn.1005-6122.2002.04.018

    SUN Jiping,ZHANG Changsen. Effect of train on the cutoff frequency of trapezoid-tunnel[J]. Journal of Microwares,2002,18(4):76-79. doi: 10.3969/j.issn.1005-6122.2002.04.018
    [16] 孙继平,张长森. 异型波导截止频率的研究[J]. 煤炭学报,2003,28(2):210-213. doi: 10.3321/j.issn:0253-9993.2003.02.021

    SUN Jiping,ZHANG Changsen. Study on cut-off frequency of abnormity wave-guide[J]. Journal of China Coal Society,2003,28(2):210-213. doi: 10.3321/j.issn:0253-9993.2003.02.021
    [17] 孙继平,成凌飞,张长森. 截面尺寸对矩形巷道中电磁波传播的影响[J]. 中国矿业大学学报,2005,34(5):596-599. doi: 10.3321/j.issn:1000-1964.2005.05.011

    SUN Jiping,CHENG Lingfei,ZHANG Changsen. Influence of Transverse Dimensions on Electromagnetic Waves Propagation in Rectangular Tunnels[J]. Journal of China University of Mining & Technology,2005,34(5):596-599. doi: 10.3321/j.issn:1000-1964.2005.05.011
    [18] 孙继平,刘毅,樊京. 煤矿井下高频电磁骚扰工程计算模型[J]. 煤炭学报,2012,37(12):2118-2122. doi: 10.13225/j.cnki.jccs.2012.12.016

    SUN Jiping,LIU Yi,FAN Jing. High frequency electromagnetic disturbance engineering calculation model in coal mine tunnel[J]. Journal of China Coal Society,2012,37(12):2118-2122. doi: 10.13225/j.cnki.jccs.2012.12.016
    [19] 赵静,姚善化. 煤矿巷道中运输机车对电磁波截止频率的影响[J]. 矿业快报,2007(4):53-54,81.

    ZHAO Jing,YAO Shanhua. Effects of electric locomotive on cut-off frequencies of electromagnetic wave in coal mine tunnel[J]. Express Information of Mining Industry,2007(4):53-54,81.
    [20] 刘玲丽. 列车对椭圆形隧道电磁波传播特性的影响[D]. 昆明: 云南师范大学, 2007.

    LIU Lingli. Effect of train on electromagnetic wave propagation characteristics in elliptical tunnel[D]. Kunming: Yunnan Normal University, 2007.
    [21] ZHOU Chenming. Ray tracing and modal methods for modeling radio propagation in tunnels with rough walls[J]. IEEE Transactions on Antennas and Propagation,2017,65(5):2624-2634. doi: 10.1109/TAP.2017.2677398
    [22] KUMAR K S, LEE Y H, MENG Y S. Radio-wave propagation in tunnel structures at ISM band: a preliminary study[C]. 2018 International Conference on Intelligent Rail Transportation, Singapore, 2018: 1-4.
    [23] GHADDAR M,BEN MABROUK I,NEDIL M,et al. Deterministic modeling of 5G millimeter-wave communication in an underground mine tunnel[J]. IEEE Access,2019,7:116519-116528. doi: 10.1109/ACCESS.2019.2933775
    [24] LI Shuangde,LIU Yuanjian,YAO Lin,et al. Improved channel model and analysis of the effect of bodies in curved tunnel using ray tracing[J]. IEEE Antennas and Wireless Propagation Letters,2020,19(7):1162-1166. doi: 10.1109/LAWP.2020.2993469
    [25] 米广双,杨维. 基于镜像原理的半圆拱形矿井巷道电磁波传播场强预测[J]. 煤炭学报,2020,45(增刊2):1089-1099. doi: 10.13225/j.cnki.jccs.2020.0416

    MI Guangshuang,YANG Wei. Field strength prediction of electromagnetic wave propagation along semicircular arched mine roadway based on mirror principle[J]. Journal of China Coal Society,2020,45(S2):1089-1099. doi: 10.13225/j.cnki.jccs.2020.0416
    [26] ZHAI Menglin,ZHAI Kai,CUI Hengrong,et al. Multifrequency channel characterization for curved tunnels[J]. IEEE Antennas and Wireless Propagation Letters,2021,20(12):2457-2460. doi: 10.1109/LAWP.2021.3114553
    [27] 孙继平,张高敏. 基于混合射线追踪的矿井电磁波分析方法[J]. 煤炭学报,2022,47(7):2834-2843.

    SUN Jiping,ZHANG Gaomin. Mine electromagnetic wave analysis method based on mixed raytracing[J]. Journal of China Coal Society,2022,47(7):2834-2843.
    [28] LIENARD M,DEGAUQUE P. Propagation in wide tunnels at 2 GHz:a statistical analysis[J]. IEEE Transactions on Vehicular Technology,1998,47(4):1322-1328. doi: 10.1109/25.728522
    [29] ZHANG Yueping,HWANG Y. Characterization of UHF radio propagation channels in tunnel environments for microcellular and personal communications[J]. IEEE Transactions on Vehicular Technology,1998,47(1):283-296. doi: 10.1109/25.661054
    [30] DJADEL M, DESPINS C, AFFES S. Narrowband propagation characteristics at 2.45 and 18 GHz in underground mining environments[C]. IEEE Global Telecommunications Conference, Taipei, 2002: 1870-1874.
    [31] HOU Weibin,WANG Junhong,LI Dawei,et al. Radio-wave propagation in a curved tunnel with a semicircle cross section[J]. IEEE Antennas and Propagation Magazine,2018,60(4):122-131. doi: 10.1109/MAP.2018.2839958
    [32] ELAZHARI M E, TALBI L, NEDIL M. Comparative study of four path loss models for UWB off-body propagation channel inside a mine[C]. IEEE International Symposium on Antennas and Propagation and USNC−URSI Radio Science Meeting, Atlanta, 2019: 2103-2104.
    [33] TARIQ S A M,DESPINS C L,AFFES S,et al. Angular dispersion of a scattered underground wireless channel at 60 GHz[J]. IEEE Access,2020,8:67572-67580. doi: 10.1109/ACCESS.2020.2986716
    [34] 孙继平,张高敏. 矿用5G频段选择及天线优化设置研究[J]. 工矿自动化,2020,46(5):1-7. doi: 10.13272/j.issn.1671-251x.17592

    SUN Jiping,ZHANG Gaomin. Research on 5G frequency band selection and antenna optimization setting in coal mine[J]. Industry and Mine Automation,2020,46(5):1-7. doi: 10.13272/j.issn.1671-251x.17592
  • 加载中
图(1) / 表(1)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  30
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-06
  • 修回日期:  2022-10-17
  • 网络出版日期:  2022-10-21

目录

    /

    返回文章
    返回