留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于模糊贝叶斯网络的矿井排水系统故障诊断

史晓娟 姚兵 顾华北

史晓娟,姚兵,顾华北. 基于模糊贝叶斯网络的矿井排水系统故障诊断[J]. 工矿自动化,2022,48(9):77-84.  doi: 10.13272/j.issn.1671-251x.18014
引用本文: 史晓娟,姚兵,顾华北. 基于模糊贝叶斯网络的矿井排水系统故障诊断[J]. 工矿自动化,2022,48(9):77-84.  doi: 10.13272/j.issn.1671-251x.18014
SHI Xiaojuan, YAO Bing, GU Huabei. Fault diagnosis of mine drainage system based on fuzzy Bayesian network[J]. Journal of Mine Automation,2022,48(9):77-84.  doi: 10.13272/j.issn.1671-251x.18014
Citation: SHI Xiaojuan, YAO Bing, GU Huabei. Fault diagnosis of mine drainage system based on fuzzy Bayesian network[J]. Journal of Mine Automation,2022,48(9):77-84.  doi: 10.13272/j.issn.1671-251x.18014

基于模糊贝叶斯网络的矿井排水系统故障诊断

doi: 10.13272/j.issn.1671-251x.18014
基金项目: 陕西省重点研发计划项目(2018GY-010)。
详细信息
    作者简介:

    史晓娟(1970—),女,陕西西安人,教授,博士,研究方向为计算机监测与控制,E-mail:11996812@qq.com

  • 中图分类号: TD744

Fault diagnosis of mine drainage system based on fuzzy Bayesian network

  • 摘要: 矿井排水系统不断向自动化、智能化方向发展,系统结构和功能越来越复杂,单一部件的功能异常和故障问题可能会造成整个系统故障。针对现有矿井排水系统故障诊断方法实施难度较大、未考虑系统的整体性、故障诊断效率低等问题,提出一种基于模糊贝叶斯网络的矿井排水系统故障诊断方法。首先,利用故障树分析法将系统的故障原因逐层分解细化,找出系统故障的根本原因。其次,将故障树中的事件转换为贝叶斯网络的节点,逻辑门转换为贝叶斯网络的有向边及条件概率,根据故障树与贝叶斯网络之间的映射关系构建贝叶斯网络。然后,将模糊集合理论引入贝叶斯网络中,通过专家评估确定故障与征兆间的关联强度,经三角模糊数模糊化、均值化、去模糊化处理,得到模糊贝叶斯网络的条件概率。最后,根据先验概率和条件概率,利用模糊贝叶斯网络判断各根节点的故障概率。利用Genie3.0仿真软件建立模糊贝叶斯网络并进行推理分析和诊断测试,结果表明,该方法对各故障征兆的诊断准确率均在80%以上,平均准确率为82.7%。该方法不仅能确定故障源的具体位置和具体部件,还能找出矿井排水系统的薄弱点,排除潜在故障,提升系统的可靠性与安全性。

     

  • 图  1  矿井排水系统故障树模型

    Figure  1.  Fault tree model of mine drainage system

    图  2  故障树与模糊贝叶斯网络的转换流程

    Figure  2.  The conversion process of fault tree to fuzzy Bayesian network

    图  3  故障树逻辑门与模糊贝叶斯网络的转换关系

    Figure  3.  Transformation relationship between logic gate of fault tree and fuzzy Bayesian network

    图  4  针对流量异常故障的贝叶斯网络

    Figure  4.  Fuzzy Bayesian network for flow anomaly failures

    图  5  模糊贝叶斯网络故障诊断推理

    Figure  5.  Fault diagnosis reasoning of fuzzy Bayesian network

    图  6  根节点先验概率与后验概率对比

    Figure  6.  Comparison of prior probability and posterior probability of root node

    表  1  矿井排水系统故障树各符号意义

    Table  1.   Significance of symbols of fault tree of mine drainage system

    符号故障 符号故障
    T排水系统故障 X7淤塞
    E1流量异常X8散热不良
    E2温度异常X9润滑不良
    E3振动信号异常X10短路
    E4负压不足X11轴承故障
    E5正压不足X12叶轮卡死
    Y1管道故障X13联轴器故障
    Y2电动机故障X14紧固件松动
    Y3水泵故障X15水泵汽蚀
    Y4压力水故障X16水泵轴故障
    Y5射流装置故障X17管道缺水
    Y6真空管道故障X18引水阀故障
    X1管道破裂X19射流阀故障
    X2闸阀故障X20射流器故障
    X3电压过低X21真空阀故障
    X4转速过低X22真空管堵塞
    X5叶轮损坏X23电动机卡死
    X6轴封漏气X24电动机缺相
    下载: 导出CSV

    表  2  语言变量与三角模糊数之间的对应关系

    Table  2.   Correspondence between linguistic variables and triangular fuzzy numbers

    序号语言变量符号三角模糊数
    1很低VL(0,0,0.2)
    2L(0.1,0.2,0.4)
    3中等M(0.3,0.5,0.7)
    4H(0.6,0.8,0.9)
    5很高VH(0.8,1.0,1.0)
    下载: 导出CSV

    表  3  各根节点的先验概率

    Table  3.   The prior probability of each root node

    故障符号先验概率
    管道破裂X10.02
    闸阀故障X20.10
    电压过低X30.08
    转速过低X40.20
    叶轮损坏X50.14
    轴封漏气X60.09
    淤塞X70.22
    下载: 导出CSV

    表  4  专家评估结果

    Table  4.   Expert evaluation results

    条件概率专家评估结果
    专家1专家2专家3专家4
    P(Y1=1|X1=1,X2=0)VLVLMVL
    P(Y1=1|X1=0,X2=1)LMLL
    P(Y2=1|X3=0,X4=1)MLMM
    P(Y2=1|X3=1,X4=0)VLLLVL
    P(Y3=1|X6=0,X7=0,X5=1)LMLVL
    P(Y3=1|X6=0,X7=1,X5=0)MMLM
    P(Y3=1|X6=0,X7=1,X5=1)MHMM
    P(Y3=1|X6=1,X7=0,X5=0)LVLVLL
    P(Y3=1|X6=1,X7=0,X5=1)LLVLVL
    P(Y3=1|X6=1,X7=1,X5=0)VHMHVH
    P(E1=1|Y1=0,Y2=0,Y3=1)VHHMH
    P(E1=1|Y1=0,Y2=1,Y3=0)LHMH
    P(E1=1|Y1=0,Y2=1,Y3=1)MVHVHVH
    P(E1=1|Y1=1,Y2=0,Y3=0)LLVLVL
    P(E1=1|Y1=1,Y2=0,Y3=1)VLLLM
    P(E1=1|Y1=1,Y2=1,Y3=0)MMLM
    下载: 导出CSV

    表  5  各叶节点的条件概率

    Table  5.   Conditional probability of each leaf node

    故障故障征兆条件概率
    X2;X1Y1P(Y1=1|X1=1,X2=0)=0.1625
    X2;X1Y1P(Y1=1|X1=0,X2=1)=0.3125
    X3;X4Y2P(Y2=1|X3=0,X4=1)=0.4375
    X3;X4Y2P(Y2=1|X3=1,X4=0)=0.1500
    X6;X7;X5Y3P(Y3=1|X6=0,X7=0,X5=1)=0.2625
    X6;X7;X5Y3P(Y3=1|X6=0,X7=1,X5=0)=0.4375
    X6;X7;X5Y3P(Y3=1|X6=0,X7=1,X5=1)=0.5625
    X6;X7;X5Y3P(Y3=1|X6=1,X7=0,X5=0)=0.1500
    X6;X7;X5Y3P(Y3=1|X6=1,X7=0,X5=1)=0.1500
    X6;X7;X5Y3P(Y3=1|X6=1,X7=1,X5=0)=0.7875
    Y1;Y2;Y3E1P(E1=1|Y1=0,Y2=0,Y3=1)=0.7375
    Y1;Y2;Y3E1P(E1=1|Y1=0,Y2=1,Y3=0)=0.5625
    Y1;Y2;Y3E1P(E1=1|Y1=0,Y2=1,Y3=1)=0.8375
    Y1;Y2;Y3E1P(E1=1|Y1=1,Y2=0,Y3=0)=0.1500
    Y1;Y2;Y3E1P(E1=1|Y1=1,Y2=0,Y3=1)=0.2625
    Y1;Y2;Y3E1P(E1=1|Y1=1,Y2=1,Y3=0)=0.4375
    下载: 导出CSV

    表  6  故障诊断测试结果

    Table  6.   Fault diagnosis test results

    故障征兆诊断总次数诊断正确次数准确率/%
    流量异常726083.3
    振动信号异常302480.0
    正压不足353085.7
    负压不足463882.6
    温度异常544481.5
    下载: 导出CSV
  • [1] MEEGODA J N,JULIANO T M,POTTS L,et al. Implementation of a drainage information,analysis and management system[J]. Journal of Traffic and Transportation Engineering,2017,4(2):165-177.
    [2] MAJDI A,AMINI M,NASAB S K. Adequate drainage system design for heap leaching structures[J]. Journal of Hazardous Materials,2007,147(1/2):288-296.
    [3] 李海军, 马登武, 刘霄, 等. 贝叶斯网络理论在装备故障诊断中的应用[M]. 北京: 国防工业出版社, 2009.

    LI Haijun, MA Dengwu, LIU Xiao, et al. Application of Bayesian network theory in equipment fault diagnosis[M]. Beijing: National Defense Industry Press, 2009.
    [4] 张伟元,张朋飞,潘越,等. 基于正压给水的矿井自动排水控制系统[J]. 煤矿安全,2020,51(2):128-131. doi: 10.13347/j.cnki.mkaq.2020.02.029

    ZHANG Weiyuan,ZHANG Pengfei,PAN Yue,et al. Automatic drainage control system of coal mine based on positive pressure water supply[J]. Safety in Coal Mines,2020,51(2):128-131. doi: 10.13347/j.cnki.mkaq.2020.02.029
    [5] 董铮. 机械故障诊断基础研究“何去何从”[J]. 科技创新导报,2017,14(32):21,23. doi: 10.16660/j.cnki.1674-098X.2017.32.021

    DONG Zheng. "Where to go" for basic research on mechanical fault diagnosis[J]. Science and Technology Innovation Herald,2017,14(32):21,23. doi: 10.16660/j.cnki.1674-098X.2017.32.021
    [6] 魏晶. 具有故障自诊断功能的矿井节能排水控制系统[J]. 煤矿机电,2019,40(6):104-106. doi: 10.16545/j.cnki.cmet.2019.06.030

    WEI Jing. Energy-saving and drainage control system of mine with fault self-diagnosis function[J]. Colliery Mechanical & Electrical Technology,2019,40(6):104-106. doi: 10.16545/j.cnki.cmet.2019.06.030
    [7] 赵丽娜,赵倩,宋保健. 基于Petri网的矿井排水系统多源信息故障诊断[J]. 电子技术,2018,47(5):73-76,72. doi: 10.3969/j.issn.1000-0755.2018.05.022

    ZHAO Lina,ZHAO Qian,SONG Baojian. Fault diagnosis of multi-source information of mine drainage system based on Petri net[J]. Electronic Technology,2018,47(5):73-76,72. doi: 10.3969/j.issn.1000-0755.2018.05.022
    [8] 黄倩,黄强,鲁远祥,等. 基于LabVIEW的矿井排水装置故障监测系统的设计[J]. 工矿自动化,2011,37(5):8-11.

    HUANG Qian,HUANG Qiang,LU Yuanxiang,et al. Design of fault monitoring system of mine drainage device based on LabVIEW[J]. Industry and Mine Automation,2011,37(5):8-11.
    [9] 张志强,王嫣. 矿井排水计算机控制及故障诊断系统开发[J]. 煤炭技术,2014,33(1):59-61. doi: 10.13301/j.cnki.ct.2014.01.053

    ZHANG Zhiqiang,WANG Yan. Development of computer control and fault diagnosis system in coal mine drainage[J]. Coal Technology,2014,33(1):59-61. doi: 10.13301/j.cnki.ct.2014.01.053
    [10] 张海峰. 矿井自动排水系统故障诊断技术研究与实现[D]. 北京: 煤炭科学研究总院, 2016.

    ZHANG Haifeng. Research and implementation on fault diagnosis for mine automatic drainage system [D]. Beijing: China Coal Research Institute, 2016.
    [11] CAI Baoping,HUANG Lei,XIE Min. Bayesian networks in fault diagnosis[J]. IEEE Transactions on Industrial Informatics,2017,13(5):2227-2240. doi: 10.1109/TII.2017.2695583
    [12] 张梅,许桃,孙辉煌,等. 基于模糊故障树和贝叶斯网络的矿井提升机故障诊断[J]. 工矿自动化,2020,46(11):1-5,45. doi: 10.13272/j.issn.1671-251x.17562

    ZHANG Mei,XU Tao,SUN Huihuang,et al. Fault diagnosis of mine hoist based on fuzzy fault tree and Bayesian network[J]. Industry and Mine Automation,2020,46(11):1-5,45. doi: 10.13272/j.issn.1671-251x.17562
    [13] 陈振阳,刘成刚,钱阳阳,等. 基于故障树分析的排风热回收空调系统故障诊断与应用[J]. 苏州科技大学学报(工程技术版),2019,32(1):19-22. doi: 10.3969/j.issn.1672-0679.2019.01.004

    CHEN Zhenyang,LIU Chenggang,QIAN Yangyang,et al. Application of fault diagnosis based on fault tree analysis for exhaust heat recovery air-conditioning system[J]. Journal of Suzhou University of Science and Technology(Engineering and Technology),2019,32(1):19-22. doi: 10.3969/j.issn.1672-0679.2019.01.004
    [14] CHEN Ruwen, ZHU Songqing, HAO Fei, et al. Railway vehicle door fault diagnosis method with Bayesian network[C]. 2019 4th International Conference on Control and Robotics Engineering, Nanjing, 2019.
    [15] JUN H-B,KIM D. A Bayesian network-based approach for fault analysis[J]. Express Systems with Applications,2017,81:332-348. doi: 10.1016/j.eswa.2017.03.056
    [16] 陈洪转,赵爱佳,李腾蛟,等. 基于故障树的复杂装备模糊贝叶斯网络推理故障诊断[J]. 系统工程与电子技术,2021,43(5):1248-1261. doi: 10.12305/j.issn.1001-506X.2021.05.12

    CHEN Hongzhuan,ZHAO Aijia,LI Tengjiao,et al. Fuzzy Bayesian network inference fault diagnosis of complex equipment based on fault tree[J]. Systems Engineering and Electronics,2021,43(5):1248-1261. doi: 10.12305/j.issn.1001-506X.2021.05.12
    [17] ZHANG Guohua,CHEN Wu,JIAO Yuyong,et al. A failure probability evaluation method for collapse of drill-and-blast tunnels based on multistate fuzzy Bayesian network[J]. Engineering Geology,2020,276:105752. doi: 10.1016/j.enggeo.2020.105752
    [18] 叶银芳,李登峰,余高锋. 需求为三角模糊数的联合订货模型及其成本分摊方法[J]. 系统科学与数学,2019,39(7):1142-1158. doi: 10.12341/jssms13669

    YE Yinfang,LI Dengfeng,YU Gaofeng. A joint replenishment model with demands represented by triangular fuzzy numbers and its cost allocation method[J]. Journal of Systems Science and Mathematical Sciences,2019,39(7):1142-1158. doi: 10.12341/jssms13669
    [19] 徐双蝶,张焰,苏运. 考虑不确定性变量模糊相关性的智能配电网概率潮流计算[J]. 电网技术,2020,44(4):1488-1500. doi: 10.13335/j.1000-3673.pst.2019.0423

    XU Shuangdie,ZHANG Yan,SU Yun. Probabilistic power flow calculation in smart distribution networks considering fuzzy correlation between uncertainty variables[J]. Power System Technology,2020,44(4):1488-1500. doi: 10.13335/j.1000-3673.pst.2019.0423
    [20] 关茹男. 基于语言型Z−Numbers的多属性决策研究[D]. 太原: 山西大学, 2021.

    GUAN Runan. Research on multi-attribute decision making based on linguistic Z-Numbers[D]. Taiyuan: Shanxi University, 2021.
    [21] 曾强,黄政,魏曙寰. 基于模糊理论和贝叶斯网络的燃气轮机健康状态评估方法[J]. 科学技术与工程,2020,20(11):4363-4369. doi: 10.3969/j.issn.1671-1815.2020.11.023

    ZENG Qiang,HUANG Zheng,WEI Shuhuan. Assessment method of gas turbine health based on fuzzy theory and Bayesian network[J]. Science Technology and Engineering,2020,20(11):4363-4369. doi: 10.3969/j.issn.1671-1815.2020.11.023
    [22] 王金鑫,王忠巍,马修真,等. 基于贝叶斯网络的柴油机润滑系统多故障诊断[J]. 控制与决策,2019,34(6):1187-1194.

    WANG Jinxin,WANG Zhongwei,MA Xiuzhen,et al. Diagnosis of multiple faults of diesel engine lubrication system based on Bayesian networks[J]. Control and Decision,2019,34(6):1187-1194.
    [23] HUANG Yingping,MCMURRAN R,DHADYALLA G,et al. Probability based vehicle fault diagnosis:Bayesian network method[J]. Journal of Intelligent Manufacturing,2008,19(3):301-311. doi: 10.1007/s10845-008-0083-7
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  26
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-12
  • 修回日期:  2022-09-06
  • 网络出版日期:  2022-09-19

目录

    /

    返回文章
    返回