留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于平行控制理论的矿区无人驾驶卡车仿真系统

杨荣明 丁震 杨健健 付建华 高玉 魏亚 艾云峰 张致铭

杨荣明,丁震,杨健健,等. 基于平行控制理论的矿区无人驾驶卡车仿真系统[J]. 工矿自动化,2022,48(11):80-83, 100.  doi: 10.13272/j.issn.1671-251x.17999
引用本文: 杨荣明,丁震,杨健健,等. 基于平行控制理论的矿区无人驾驶卡车仿真系统[J]. 工矿自动化,2022,48(11):80-83, 100.  doi: 10.13272/j.issn.1671-251x.17999
YANG Rongming, DING Zhen, YANG Jianjian, et al. Simulation system of mine unmanned vehicle based on parallel control theory[J]. Journal of Mine Automation,2022,48(11):80-83, 100.  doi: 10.13272/j.issn.1671-251x.17999
Citation: YANG Rongming, DING Zhen, YANG Jianjian, et al. Simulation system of mine unmanned vehicle based on parallel control theory[J]. Journal of Mine Automation,2022,48(11):80-83, 100.  doi: 10.13272/j.issn.1671-251x.17999

基于平行控制理论的矿区无人驾驶卡车仿真系统

doi: 10.13272/j.issn.1671-251x.17999
详细信息
    作者简介:

    杨荣明(1965—),男,山西忻州人,教授级高级工程师,现主要从事煤矿开采、露天煤矿无人驾驶、煤矿智能化等技术研究及管理工作,E-mail:10010005@ceic.com

  • 中图分类号: TD67

Simulation system of mine unmanned vehicle based on parallel control theory

  • 摘要: 针对矿用车辆实车测试无人驾驶存在危险性大、测试时间长、测试成本高、测试内容覆盖面窄等问题,研究了基于平行控制理论的矿区无人驾驶卡车仿真系统。该系统采用矿用卡车动力学建模、高保真场景重构、虚拟传感器建模等关键技术,实现无人驾驶算法全面推演、系统集成可靠性测试、矿区生产预测模拟、虚实互动平行推演等功能。矿用卡车动力学建模主要步骤分为整车模型搭建与可视化场景创建2个部分,将车辆动力学模型与虚拟场景关联,利用车辆模型产生的仿真数据实时驱动虚拟场景中的车辆运动。针对大型露天矿场景复杂、不规则的特性,通过无人机航拍测绘、激光雷达三维扫描等手段,获取矿山高精度三维模型数据,基于虚拟微多边形几何体技术、高像素虚拟纹理技术、三维场景实时渲染技术,构建高保真虚拟三维场景。虚拟传感器主要包括虚拟激光雷达、虚拟毫米波雷达、虚拟惯导装置、虚拟视觉相机,搭载于虚拟矿车上,负责生成虚拟场景中的数据信息,并将数据发送到自动驾驶控制器进行处理。基于该仿真系统,可以进行单车测试、多车调度测试、智能调度算法测试,还可以对现场车辆和虚拟车辆的虚实互动进行测试,为整个矿区的稳定运输、复杂路口的推演模拟、智能调度算法的最优决策提供验证平台,确保无人驾驶测试效率和安全,加快矿区无人驾驶技术升级。

     

  • 图  1  高保真虚拟矿山重构渲染效果

    Figure  1.  Reconstruction rendering effect of high fidelity virtual mine

    图  2  虚拟传感器获取的点云数据

    Figure  2.  Point cloud data acquired by virtual sensors

    图  3  虚拟驾驶器

    Figure  3.  Virtual driver

    图  4  虚实互动平行推演场景

    Figure  4.  Virtual reality interaction parallel deduction scene

  • [1] 杨超,高玉,艾云峰,等. 端对端平行无人矿山系统及其关键技术[J]. 智能科学与技术学报,2019,1(3):228-240. doi: 10.11959/j.issn.2096-6652.201929

    YANG Chao,GAO Yu,AI Yunfeng,et al. End-to-end parallel autonomous mining systems and key technologies[J]. Chinese Journal of Intelligent Science and Technology,2019,1(3):228-240. doi: 10.11959/j.issn.2096-6652.201929
    [2] 陈龙,王晓,杨健健,等. 平行矿山:从数字孪生到矿山智能[J]. 自动化学报,2021,47(7):1633-1645. doi: 10.16383/j.aas.2021.y000001

    CHEN Long,WANG Xiao,YANG Jianjian,et al. Parallel mining operating systems:from digital twins to mining intelligence[J]. Acta Automatica Sinica,2021,47(7):1633-1645. doi: 10.16383/j.aas.2021.y000001
    [3] 王国法,任怀伟,庞义辉,等. 煤矿智能化(初级阶段)技术体系研究与工程进展[J]. 煤炭科学技术,2020,48(7):1-27. doi: 10.13199/j.cnki.cst.2020.07.001

    WANG Guofa,REN Huaiwei,PANG Yihui,et al. Research and engineering progress of intelligent coal mine technical system in early stages[J]. Coal Science and Technology,2020,48(7):1-27. doi: 10.13199/j.cnki.cst.2020.07.001
    [4] PAZOOKI A,RAKHEJA S,CAO Dongpu. Kineto-dynamic directional response analysis of an articulated frame steer vehicle[J]. International Journal of Vehicle Design,2014,65(1):1-30. doi: 10.1504/IJVD.2014.060063
    [5] HE Y,KHAJEPOUR A,MCPHEE J,et al. Dynamic modelling and stability analysis of articulated frame steer vehicles[J]. International Journal of Heavy Vehicle Systems,2005,12(1):28-59. doi: 10.1504/IJHVS.2005.005668
    [6] DAHER N,IVANTYSYNOVA M. Yaw stability control of articulated frame off-highway vehicles via displacement controlled steer-by-wire[J]. Control Engineering Practice,2015,45:46-53. doi: 10.1016/j.conengprac.2015.08.011
    [7] PAZOOKI A. Ride and directional dynamic analysis of articulated frame steer vehicles[D]. Montreal: Concordia University, 2012.
    [8] 王果,蒋瑞波,肖海红,等. 基于无人机倾斜摄影的露天矿边坡三维重建[J]. 中国矿业,2017,26(4):158-161. doi: 10.3969/j.issn.1004-4051.2017.04.031

    WANG Guo,JIANG Ruibo,XIAO Haihong,et al. Research on slope reconstruction technique based on UAV oblique photogrammetry[J]. China Mining Magazine,2017,26(4):158-161. doi: 10.3969/j.issn.1004-4051.2017.04.031
    [9] 郭宝宇,张作昌,董希彬. 基于倾斜摄影的矿区三维场景建模及Web平台构建[J]. 现代测绘,2020,43(5):38-43. doi: 10.3969/j.issn.1672-4097.2020.05.012

    GUO Baoyu,ZHANG Zuochang,DONG Xibin. 3D scene modeling research and realization of coal mine area based on oblique photogrammetry[J]. Modern Surveying and Mapping,2020,43(5):38-43. doi: 10.3969/j.issn.1672-4097.2020.05.012
    [10] 易翔,王蔚然. 激光雷达系统仿真软件设计与实现[J]. 激光与红外,2003(3):178-180. doi: 10.3969/j.issn.1001-5078.2003.03.005

    YI Xiang,WANG Weiran. Design and implementation of simulation software for lidar system[J]. Laser & Infrared,2003(3):178-180. doi: 10.3969/j.issn.1001-5078.2003.03.005
    [11] FANG Jin,ZHOU Dingfu,YAN Feilong,et al. Augmented LiDAR simulator for autonomous driving[J]. IEEE Robotics and Automation Letters,2020,5(2):1931-1938. doi: 10.1109/LRA.2020.2969927
    [12] 谭颖,谭长睿,向翼林. 基于Unity3D与HTC VIVE的虚拟现实驾考训练设计与实现[J]. 中国高新科技,2020(7):49-50.

    TAN Ying,TAN Changrui,XIANG Yilin. Design and implementation of virtual reality driving test training based on Unity3D and HTC VIVE[J]. China High and New Technology,2020(7):49-50.
    [13] 赵晓松. 基于Untiy3D的可视化虚拟仿真实验平台的设计与开发[D]. 西安: 西安电子科技大学, 2017.

    ZHAO Xiaosong. Design and development of visual virtual simulation experiment platform based on Unity3D[D]. Xi'an: Xidian University, 2017.
    [14] 李晨. 汽车驾驶模拟训练系统设计的研究[D]. 广州: 华南理工大学, 2016.

    LI Chen. The research of the automobile driving training simulator system design[D]. Guangzhou: South China University of Technology, 2016.
  • 加载中
图(4)
计量
  • 文章访问数:  208
  • HTML全文浏览量:  33
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-08
  • 修回日期:  2022-10-27
  • 网络出版日期:  2022-11-21

目录

    /

    返回文章
    返回