留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MTF和DenseNet的滚动轴承故障诊断方法

姜家国 郭曼利

姜家国,郭曼利. 基于MTF和DenseNet的滚动轴承故障诊断方法[J]. 工矿自动化,2022,48(9):63-68.  doi: 10.13272/j.issn.1671-251x.17985
引用本文: 姜家国,郭曼利. 基于MTF和DenseNet的滚动轴承故障诊断方法[J]. 工矿自动化,2022,48(9):63-68.  doi: 10.13272/j.issn.1671-251x.17985
JIANG Jiaguo, GUO Manli. Fault diagnosis method of rolling bearing based on MTF and DenseNet[J]. Journal of Mine Automation,2022,48(9):63-68.  doi: 10.13272/j.issn.1671-251x.17985
Citation: JIANG Jiaguo, GUO Manli. Fault diagnosis method of rolling bearing based on MTF and DenseNet[J]. Journal of Mine Automation,2022,48(9):63-68.  doi: 10.13272/j.issn.1671-251x.17985

基于MTF和DenseNet的滚动轴承故障诊断方法

doi: 10.13272/j.issn.1671-251x.17985
基金项目: 安徽省教育厅高校自然科学研究基金重点项目(KJ2019A1130,KJ2019A1135);滁州职业技术学院科技创新平台项目(YJP-2021-02);滁州职业技术学院2019年校级科研一般项目(YJY-2019-12)。
详细信息
    作者简介:

    姜家国(1988—),男,安徽巢湖人,硕士,研究方向为基于深度学习的故障诊断,E-mail:jiangjgjiangjg@163.com

  • 中图分类号: TD67

Fault diagnosis method of rolling bearing based on MTF and DenseNet

  • 摘要: 基于模型和基于信号处理与分析的滚动轴承故障诊断方法存在建模困难、信号特征难以提取等问题;基于浅层机器学习的滚动轴承故障诊断方法对复杂数据的特征学习能力有限;基于深度学习的滚动轴承故障诊断方法多采用卷积神经网络,但随着网络深度加深会出现梯度弥散或消失的问题,且直接将滚动轴承振动信号转换成一维或二维图像作为网络输入会无法保留信号间的时间相关性,导致信号信息丢失。针对上述问题,提出了一种基于马尔可夫变迁场(MTF)和密集连接卷积网络(DenseNet)的滚动轴承故障诊断方法。将滚动轴承振动信号通过MTF编码后生成二维图像,保留了信号的时序信息和状态迁移信息;将二维图像作为DenseNet的输入,通过DenseNet对滚动轴承振动信号故障特征进行提取,增强了特征信息传播,使特征信息得到充分利用,进而实现故障分类识别。采用凯斯西储大学轴承数据集上的数据进行试验,结果表明,该方法能有效识别滚动轴承故障类型,故障诊断准确率达99.5%。为进一步验证该方法在电动机载荷发生变化情况下的故障诊断能力及优越性,选取灰度图、包络谱图、倒频谱图和MTF生成图4种网络输入图像分别与Inception,ResNet,DenseNet 3种网络相结合的方法进行对比试验,结果表明:不同方法的故障诊断准确率均在电动机载荷不变时高于电动机载荷变化时;MTF+DenseNet方法故障诊断准确率高于其他方法,在电动机载荷发生变化的情况下仍具有较高的故障诊断准确率,平均值为94.53%,泛化性能较好。

     

  • 图  1  DenseNet结构

    Figure  1.  Structure of densely connected convolutional networks

    图  2  基于MTF和DenseNet的滚动轴承故障诊断模型结构

    Figure  2.  Rolling bearing fault diagnosis model based on Markov transition field and densely connected convolutional networks

    图  3  故障诊断模型准确率变化曲线

    Figure  3.  Variation curves of accuracy of fault diagnosis model

    图  4  滚动轴承故障分类结果

    Figure  4.  Classification results of rolling bearing faults

    表  1  试验数据集

    Table  1.   Experimental dataset

    故障尺寸/mm故障
    位置
    故障标签数据集A
    (载荷0.746 kW)
    数据集B
    (载荷1.491 kW)
    数据集C
    (载荷2.237 kW)
    训练样本数测试样本数训练样本数测试样本数训练样本数测试样本数
    01400100400100400100
    0.18内圈2400100400100400100
    滚动体3400100400100400100
    外圈4400100400100400100
    0.36内圈5400100400100400100
    滚动体6400100400100400100
    外圈7400100400100400100
    0.54内圈8400100400100400100
    滚动体9400100400100400100
    外圈10400100400100400100
    下载: 导出CSV

    表  2  不同方法故障诊断结果对比

    Table  2.   Comparison of fault diagnosis results of different methods

    网络输入图像准确率/%
    A→AA→BA→CB→AB→BB→CC→AC→BC→C平均
    Inception灰度图91.771.367.373.691.477.167.578.490.678.77
    包络谱图94.978.673.578.693.385.476.186.292.684.36
    倒频谱图90.371.770.273.790.085.872.384.492.381.19
    MTF生成图98.385.177.582.997.385.783.583.297.187.84
    ResNet灰度图94.476.574.178.593.586.174.382.293.383.66
    包络谱图94.578.074.181.594.886.272.384.694.484.49
    倒频谱图97.084.082.981.894.189.479.292.997.088.70
    MTF生成图98.885.880.784.798.490.685.385.198.289.73
    DenseNet灰度图96.876.574.179.595.782.584.082.096.485.28
    包络谱图97.383.776.386.498.181.373.287.297.686.79
    倒频谱图98.886.985.687.098.496.183.094.897.692.02
    MTF生成图99.692.684.992.399.596.992.193.399.694.53
    下载: 导出CSV
  • [1] 徐青青,赵海芳,李守军. 一种煤矿机械轴承故障诊断方法[J]. 工矿自动化,2019,45(10):80-85,90.

    XU Qingqing,ZHAO Haifang,LI Shoujun. A fault diagnosis method for coal mine machinery bearing[J]. Industry and Mine Automation,2019,45(10):80-85,90.
    [2] 樊红卫,张旭辉,曹现刚,等. 智慧矿山背景下我国煤矿机械故障诊断研究现状与展望[J]. 振动与冲击,2020,39(24):194-204. doi: 10.13465/j.cnki.jvs.2020.24.027

    FAN Hongwei,ZHANG Xuhui,CAO Xiangang,et al. Research status and prospect of fault diagnosis of China's coal mine machines under background of intelligent mine[J]. Journal of Vibration and Shock,2020,39(24):194-204. doi: 10.13465/j.cnki.jvs.2020.24.027
    [3] 文红权. 基于深度信念网络的故障诊断研究[D]. 北京: 北京交通大学, 2018.

    WEN Hongquan. A fault diagnosis method based on deep belief networks[D]. Beijing: Beijing Jiaotong University, 2018.
    [4] 裴杏龙. 基于信号处理与深度学习的滚动轴承故障诊断方法研究[D]. 重庆: 重庆理工大学, 2022.

    PEI Xinglong. Research on fault diagnosis of rolling bearing based on signal processing and deeping learning[D]. Chongqing: Chongqing University of Technology, 2022.
    [5] 李伟龙. 基于深度学习的滚动轴承故障诊断的方法研究[D]. 哈尔滨: 哈尔滨理工大学, 2022.

    LI Weilong. Research on rolling bearing fault diagnosis method based on deep learning[D]. Harbin: Harbin University of Science and Technology, 2022.
    [6] 江俊君,李震宇,刘贤明. 基于深度学习的单目深度估计方法综述[J]. 计算机学报,2022,45(6):1276-1307. doi: 10.11897/SP.J.1016.2022.01276

    JIANG Junjun,LI Zhenyu,LIU Xianming. Deep learning based monocular depth estimation:a survey[J]. Chinese Journal of Computers,2022,45(6):1276-1307. doi: 10.11897/SP.J.1016.2022.01276
    [7] 张伟. 基于卷积神经网络的轴承故障诊断算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    ZHANG Wei. Study on bearing fault diagnosis algorithm based on convolutional neural network[D]. Harbin: Harbin Institute of Technology, 2017.
    [8] 陈晓雷,孙永峰,李策,等. 基于卷积神经网络和双向长短期记忆的稳定抗噪声滚动轴承故障诊断[J]. 吉林大学学报(工学版),2022,52(2):296-309.

    CHEN Xiaolei,SUN Yongfeng,LI Ce,et al. Stable anti-noise fault diagnosis of rolling bearing based on CNN-BiLSTM[J]. Journal of Jilin University(Engineering and Technology Edition),2022,52(2):296-309.
    [9] 赵小强,张亚洲. 利用改进卷积神经网络的滚动轴承变工况故障诊断方法[J]. 西安交通大学学报,2021,55(12):108-118.

    ZHAO Xiaoqiang,ZHANG Yazhou. Improved CNN-based fault diagnosis method for rolling bearings under variable working conditions[J]. Journal of Xi'an Jiaotong University,2021,55(12):108-118.
    [10] 宫文峰,陈辉,张泽辉,等. 基于改进卷积神经网络的滚动轴承智能故障诊断研究[J]. 振动工程学报,2020,33(2):400-413. doi: 10.16385/j.cnki.issn.1004-4523.2020.02.021

    GONG Wenfeng,CHEN Hui,ZHANG Zehui,et al. Intelligent fault diagnosis for rolling bearing based on improved convolutional neural network[J]. Journal of Vibration Engineering,2020,33(2):400-413. doi: 10.16385/j.cnki.issn.1004-4523.2020.02.021
    [11] 姜家国,郭曼利,杨思国. 基于GAF和DenseNet的滚动轴承故障诊断方法[J]. 工矿自动化,2021,47(8):84-89.

    JIANG Jiaguo,GUO Manli,YANG Siguo. Fault diagnosis of rolling bearings based on GAF and DenseNet[J]. Industry and Mine Automation,2021,47(8):84-89.
    [12] HUANG Gao, LIU Zhuang, LAURENS V, et al. Densely connected convolutional networks[C]. IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, 2017: 2261-2269.
    [13] 雷春丽,夏奔锋,薛林林,等. 基于MTF−CNN的滚动轴承故障诊断方法[J]. 振动与冲击,2022,41(9):151-158. doi: 10.13465/j.cnki.jvs.2022.09.020

    LEI Chunli,XIA Benfeng,XUE Linlin,et al. Rolling bearing fault diagnosis method based on MTF-CNN[J]. Journal of Vibration and Shock,2022,41(9):151-158. doi: 10.13465/j.cnki.jvs.2022.09.020
    [14] 曹洁,马佳林,黄黛麟,等. 一种基于多通道马尔可夫变迁场的故障诊断方法[J]. 吉林大学学报(工学版),2022,52(2):491-496.

    CAO Jie,MA Jialin,HUANG Dailin,et al. A fault diagnosis method based on multi Markov transition field[J]. Journal of Jilin University(Engineering and Technology Edition),2022,52(2):491-496.
    [15] 王小玉,韩彤彤,尚学达. 基于密集连接网络的驾驶疲劳状态检测方法[J]. 北京邮电大学学报,2021,44(1):52-58.

    WANG Xiaoyu,HAN Tongtong,SHANG Xueda. Driving fatigue state detecting method based on densely connected convolutional network[J]. Journal of Beijing University of Posts and Telecommunications,2021,44(1):52-58.
    [16] 熊鹏,汤宝平,邓蕾,等. 基于动态加权密集连接卷积网络的变转速行星齿轮箱故障诊断[J]. 机械工程学报,2019,55(7):52-57. doi: 10.3901/JME.2019.07.052

    XIONG Peng,TANG Baoping,DENG Lei,et al. Fault diagnosis for planetary gearbox by dynamically weighted densely connected convolutional networks[J]. Journal of Mechanical Engineering,2019,55(7):52-57. doi: 10.3901/JME.2019.07.052
    [17] 曹思灿. 基于生成对抗网络的轴承故障诊断方法研究[D]. 武汉: 华中科技大学, 2019.

    CAO Sican. Generative adversarial network based methods for rolling bearing fault diagnosis[D]. Wuhan: Huazhong University of Science and Technology, 2019.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  289
  • HTML全文浏览量:  74
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-20
  • 修回日期:  2022-09-07
  • 网络出版日期:  2022-09-23

目录

    /

    返回文章
    返回