留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于AHP−TOPSIS综合评价法的离心泵健康状态评估

乔佳伟 田慕琴

乔佳伟,田慕琴. 基于AHP−TOPSIS综合评价法的离心泵健康状态评估[J]. 工矿自动化,2022,48(9):69-76.  doi: 10.13272/j.issn.1671-251x.17984
引用本文: 乔佳伟,田慕琴. 基于AHP−TOPSIS综合评价法的离心泵健康状态评估[J]. 工矿自动化,2022,48(9):69-76.  doi: 10.13272/j.issn.1671-251x.17984
QIAO Jiawei, TIAN Muqin. Health condition assessment of centrifugal pump based on AHP-TOPSIS comprehensive evaluation method[J]. Journal of Mine Automation,2022,48(9):69-76.  doi: 10.13272/j.issn.1671-251x.17984
Citation: QIAO Jiawei, TIAN Muqin. Health condition assessment of centrifugal pump based on AHP-TOPSIS comprehensive evaluation method[J]. Journal of Mine Automation,2022,48(9):69-76.  doi: 10.13272/j.issn.1671-251x.17984

基于AHP−TOPSIS综合评价法的离心泵健康状态评估

doi: 10.13272/j.issn.1671-251x.17984
基金项目: 山西省重点研发计划项目(202102010101005);山西省科技重大专项计划“揭榜挂帅”项目(202101020101021)。
详细信息
    作者简介:

    乔佳伟(1995—),男,山西吕梁人,硕士研究生,主要研究方向为矿用智能电器,E-mail:qjw03609003@163.com

    通讯作者:

    田慕琴(1962—),女,山西五台人,教授,博士,主要研究方向为大型机电设备状态在线监测、故障预警和智能控制,E-mail:tianmuqin@163.com

  • 中图分类号: TD67

Health condition assessment of centrifugal pump based on AHP-TOPSIS comprehensive evaluation method

  • 摘要: 针对离心泵叶轮磨损问题,现有研究大都集中在对叶轮磨损的数值仿真分析、振动信号分析和磨损量检测上,很少对叶轮磨损下的离心泵工况参数进行研究。针对该问题 ,提出了一种基于层次分析法 (AHP)和优劣解距离法(TOPSIS)综合评价的离心泵健康状态评估方法。首先根据离心泵的运行条件,结合离心泵的性能要求,确定了表征离心泵健康状态的工况参数(流量、扬程、效率、轴功率);然后以叶轮外径和比转数大小作为工况参数评价指标,利用AHP和超传递近似法确定各工况参数对离心泵健康状态的权重值;最后利用TOPSIS综合评价法评估离心泵工况参数,通过加权求和方式得到离心泵的健康状态评分,实现对离心泵的健康状态评估。以IS−100−80−125型单级离心泵为研究对象,将叶轮外径由125 mm磨损至87 mm,得到离心泵不同叶轮外径下的工况参数,利用AHP−TOPSIS综合评价法评估离心泵各工况参数和健康状态,结果表明:离心泵的叶轮磨损量和离心泵健康状态呈线性关系,随着叶轮磨损量的不断增加,离心泵排水能力不断降低,评估结果符合离心泵实际情况,证明了该方法的合理性和可行性。

     

  • 图  1  离心泵健康状态评估流程

    Figure  1.  The health condition assessment process of centrifugal pump

    图  2  扬程特征值衰减趋势

    Figure  2.  Attenuation trend graphs of head characteristic values

    图  3  效率特征值衰减趋势

    Figure  3.  Attenuation trend graphs of efficiency characteristic values

    图  4  轴功率特征值衰减趋势

    Figure  4.  Attenuation trend graphs of shaft power characteristic values

    图  5  离心泵工况参数评分趋势

    Figure  5.  Grade trend graphs of the working condition parameters of centrifugal pump

    图  6  离心泵健康状态评分趋势

    Figure  6.  Grade trend graphs of the health condition of centrifugal pump

    表  1  判断矩阵构建原则

    Table  1.   Construction principle of judgment matrix

    程度含义
    12个因素相比同等重要
    32个因素相比前者比后者稍微重要
    52个因素相比前者比后者明显重要
    72个因素相比前者比后者强烈重要
    92个因素相比前者比后者极端重要
    2,4,6,8上述两相邻判断的中值
    倒数因素ij比较的结果为aij,则因素ji比较的结果为aji = 1 / aij
    下载: 导出CSV

    表  2  平均随机一致性指标取值

    Table  2.   Average random consistency index values

    s1234567
    Ir000.580.891.121.241.32
    下载: 导出CSV

    表  3  离心泵健康状态评估指标体系

    Table  3.   The health condition evaluation index system of centrifugal pump

    工况参数特征值
    $ Q $$ 0.6Q' $$ 0.8Q' $$ Q' $$ 1.2Q' $
    $ H $$ {h_1} $$ {h_2} $$ {h_3} $$ {h_4} $
    $ \eta $$ {e_1} $$ {e_2} $$ {e_3} $$ {e_4} $
    $ P $$ {p_1} $$ {p_2} $$ {p_3} $$ {p_4} $
    下载: 导出CSV

    表  4  不同指标下的判断矩阵

    Table  4.   The judgment matrix under different indexes

    准则层判断
    矩阵
    工况
    参数
    两两相比重要性
    QHηP
    叶轮外径
    (管道)
    A1Q11/271/3
    H2181/2
    η1/71/811/9
    P3291
    叶轮外径
    (流量)
    A2Q11/271/3
    H7192
    η1/21/911/8
    P51/281
    比转数A3Q1293
    H1/2172
    η1/91/711/5
    P1/31/251
    下载: 导出CSV

    表  5  一致性比率值

    Table  5.   Consistent ratio values

    判断矩阵A1A2A3
    Rc0.03460.01660.0157
    下载: 导出CSV

    表  6  工况参数特征值权重

    Table  6.   The weight of characteristic values of working condition parameters

    工况参数权重
    Q0.07250.16970.47230.2854
    H0.14050.05180.06750.7402
    η0.06640.24750.68610
    P0.05500.12170.25680.5665
    下载: 导出CSV

    表  7  最优、最劣状态特征值正向化和归一化结果

    Table  7.   Normalization and normalization results of characteristic values of the optimal and worst conditions

    特征值工况参数特征值正向化和归一化结果
    最优特征值Q1111
    H1111
    η1110
    P1111
    最劣特征值Q0.3000
    H0100
    η0000
    P0000
    下载: 导出CSV
  • [1] 国家煤矿安全监察局. 国家煤矿安全监察局关于印发《煤矿防治水细则》的通知(煤安监调查〔2018〕14号)[EB/OL]. (2018-06-06)[2022-05-23]. http://www.gov.cn/zhengce/zhengceku/2018-12/31/content_5448431.htm.

    National Coal Mine Safety Administration. Notice of the National Coal Mine Safety Administration on the Issuance of Rules for the Prevention and Control of Water in Coal Mines (Coal Safety Supervision Investigation [2018] No.14) [EB/OL]. (2018-06-06) [2022-05-23]. http//www.gov.cn/zhengce/zhengceku/2018-12/31/content_5448431.htm.
    [2] 张胜,曹骞,康灿,等. 固体颗粒粒径对输送泵叶轮磨损特性的影响[J]. 矿冶工程,2021,41(4):19-23. doi: 10.3969/j.issn.0253-6099.2021.04.005

    ZHANG Sheng,CAO Qian,KANG Can,et al. Influence of solid particle size on wear behavior of the impeller of delivery pump[J]. Mining and Metallurgical Engineering,2021,41(4):19-23. doi: 10.3969/j.issn.0253-6099.2021.04.005
    [3] 王勇,李刚祥,袁霄,等. 混合沙粒对半开式叶轮离心泵磨损的影响[J]. 排灌机械工程学报,2021,39(8):764-769.

    WANG Yong,LI Gangxiang,YUAN Xiao,et al. Influence of mixed sand on wear of centrifugal pump with semi-open impeller[J]. Journal of Drainage and Irrigation Machinery Engineering,2021,39(8):764-769.
    [4] 赖芬,王凤鸣,朱相源,等. 基于E/CRC磨损模型的离心泵壁面磨损特性研究[J]. 哈尔滨工程大学学报,2021,42(5):719-728.

    LAI Fen,WANG Fengming,ZHU Xiangyuan,et al. Erosion characteristics of centrifugal pumps based on E/CRC erosion model[J]. Journal of Harbin Engineering University,2021,42(5):719-728.
    [5] 郭文琪,田慕琴,宋建成,等. 基于多源信号融合的离心泵叶轮磨损故障分析[J]. 工矿自动化,2018,44(6):74-79. doi: 10.13272/j.issn.1671-251x.2018020029

    GUO Wenqi,TIAN Muqin,SONG Jiancheng,et al. Wear fault analysis of centrifugal pump impeller based on multi-source signal fusion[J]. Industry and Mine Automation,2018,44(6):74-79. doi: 10.13272/j.issn.1671-251x.2018020029
    [6] 尹江南,袁寿其,骆寅,等. 离心泵叶轮不同磨损程度下的振动信号分析[J]. 排灌机械工程学报,2020,38(2):139-144.

    YIN Jiangnan,YUAN Shouqi,LUO Yin,et al. Analysis of vibration signal characteristics of centrifugal pump impeller under different wear degrees[J]. Journal of Drainage and Irrigation Machinery Engineering,2020,38(2):139-144.
    [7] BOHN B,KHOIE R,GOPALUNI R B,et al. Development and characterization of a non-intrusive sensor to measure wear in centrifugal pumps[J]. IEEE Sensors Journal,2019,19(18):7906-7914. doi: 10.1109/JSEN.2019.2919283
    [8] 段礼祥,张来斌,钱永梅. AHP−模糊综合评价法在离心泵安全评价中的应用[J]. 中国安全生产科学技术,2011,7(2):127-131.

    DUAN Lixiang,ZHANG Laibin,QIAN Yongmei. Application of fuzzy comprehensive evaluation in safety assessment of centrifuge pumps[J]. Journal of Safety Science and Technology,2011,7(2):127-131.
    [9] 黄德才,李秉焱. AHP中群决策的几何平均超传递近似法[J]. 控制与决策,2012,27(5):797-800. doi: 10.13195/j.cd.2012.05.160.huangdc.010

    HUANG Decai,LI Bingyan. Geometric mean and super-transitive approximate method of AHP group decision[J]. Control and Decision,2012,27(5):797-800. doi: 10.13195/j.cd.2012.05.160.huangdc.010
    [10] 付志扬,王涛,孔令号,等. 基于AHP−TOPSIS算法的重要电力客户用电状态评估[J]. 电网技术,2022,22(9):1554-1559. doi: 10.13335/j.1000-3673.pst.2021.2280

    FU Zhiyang,WANG Tao,KONG Linghao,et al. Power consumption state evaluation of important power customers based on AHP-TOPSIS algorithm[J]. Power System Technology,2022,22(9):1554-1559. doi: 10.13335/j.1000-3673.pst.2021.2280
    [11] GBT 25411—2010 IB型单级离心泵 [S].

    GBT 25411—2010 IB Single stage centrifugal pump [S].
    [12] 郭文琪. 基于物联网的矿井主排水设备状态监测及寿命管理系统的开发[D]. 太原: 太原理工大学, 2018.

    GUO Wenqi. Development of IoT based monitoring and life management system for drainage equipment in mine[D]. Taiyuan: Taiyuan University of Technology, 2018.
    [13] 王凯,刘厚林,袁寿其,等. 离心泵多工况水力性能优化设计方法[J]. 排灌机械工程学报,2012,30(1):20-24. doi: 10.3969/j.issn.1674-8530.2012.01.005

    WANG Kai,LIU Houlin,YUAN Shouqi,et al. Optimization method for hydraulic performance of centrifugal pump at multi-operation points[J]. Journal of Drainage and Irrigation Machinery Engineering,2012,30(1):20-24. doi: 10.3969/j.issn.1674-8530.2012.01.005
    [14] 童水光,赵航,刘会琴,等. 中开多级离心泵效率优化计算方法[J]. 浙江大学学报(工学版),2019,53(5):988-996,1005.

    TONG Shuiguang,ZHAO Hang,LIU Huiqin,et al. Optimization calculation method for efficiency of multistage split case centrifugal pump[J]. Journal of Zhejiang University (Engineering Science),2019,53(5):988-996,1005.
    [15] 关醒凡. 现代泵理论与设计[M]. 北京: 中国宇航出版社, 2011.

    GUAN Xingfan. Modern pump theory and design[M]. Beijing: China Aerospace Press, 2011.
  • 加载中
图(6) / 表(7)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  29
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-06
  • 修回日期:  2022-09-02
  • 网络出版日期:  2022-09-24

目录

    /

    返回文章
    返回