留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矿用透射式检测用X射线源的辐射性能与安全性能研究

李者 王文清

李者,王文清. 矿用透射式检测用X射线源的辐射性能与安全性能研究[J]. 工矿自动化,2022,48(11):93-100.  doi: 10.13272/j.issn.1671-251x.17957
引用本文: 李者,王文清. 矿用透射式检测用X射线源的辐射性能与安全性能研究[J]. 工矿自动化,2022,48(11):93-100.  doi: 10.13272/j.issn.1671-251x.17957
LI Zhe, WANG Wenqing. Research on radiation performance and safety performance of X-ray source for mine transmission detection[J]. Journal of Mine Automation,2022,48(11):93-100.  doi: 10.13272/j.issn.1671-251x.17957
Citation: LI Zhe, WANG Wenqing. Research on radiation performance and safety performance of X-ray source for mine transmission detection[J]. Journal of Mine Automation,2022,48(11):93-100.  doi: 10.13272/j.issn.1671-251x.17957

矿用透射式检测用X射线源的辐射性能与安全性能研究

doi: 10.13272/j.issn.1671-251x.17957
基金项目: 北京市教育委员会双高建设技术技能创新服务平台及团队建设项目(1106022512)。
详细信息
    作者简介:

    李者(1978—),女,黑龙江依安人,副研究员,现从事防爆电气安全方面的研究工作,E-mail:124478340@qq.com

  • 中图分类号: TD76

Research on radiation performance and safety performance of X-ray source for mine transmission detection

  • 摘要: X射线源是X射线透射式检测的核心组成设备,其稳定性与可靠性决定了X射线透射式检测性能。为满足X射线透射式检测的性能要求,X射线源的管电压宜在100~160 kV之间选取、管电流控制在0.1~4 mA。针对由Q235钢板制造的隔爆外壳会大大降低X射线源辐射输出强度的问题,提出了在矿用X射线源的隔爆外壳上安装钢化玻璃制成的X射线透窗,增加X射线的透射率。以煤矿选矸识别透射式检测领域应用的X射线源最大管电压160 kV、最大管电流4 mA为例,通过实测计算出矿用X射线源的最大辐射输出功率约为50 mW,满足GB/T 3836.22—2017《爆炸性环境 第22部分:光辐射设备和传输系统的保护措施》规定的辐射功率不超过150 mW的要求。为降低矿用X射线源工作温度升高的风险,提出了X射线管宜选用导热性能好的陶瓷壳体,X射线管阳极与金属外壳直接固定以增加散热效果,利用X射线透窗来减少X射线管阳极电流产生的热功率,从而保证矿用X射线源的隔爆外壳表面温度小于GB/T 3836.1—2021《爆炸性环境 第1部分:设备 通用要求》规定的150 ℃限值。为避免矿用X射线源对周围环境产生辐射影响,提出了将X射线管安装在用3 mm厚不锈钢+5 mm厚金属铅制成的铅室中,以屏蔽非工作区域的X射线,从而保证矿用X射线源的非工作区域X射线泄漏的剂量当量率小于GBZ 125—2009《含密封源仪表的放射卫生防护要求》规定的2.5 µSv/h限值。

     

  • 图  1  X射线源的辐射输出窗口

    Figure  1.  Radiation output window of X-ray source

    图  2  X射线透窗布置

    Figure  2.  X-ray transmission window arrangement

    表  1  不同管电压下钨靶的X射线转换效率

    Table  1.   X-ray conversion efficiency of tungsten target under different tube voltages

    管电压/kV辐射能量转换效率/%热能转换效率/%
    1000.7499.26
    1200.8999.11
    1401.0498.96
    1601.1898.82
    2001.4898.52
    下载: 导出CSV

    表  2  管电压为100 kV时X射线穿过钢板的透射率

    Table  2.   Transmittance of X-ray through steel plate at 100 kV tube voltage

    钢板数量钢板厚度/mm信号电压/V透射率/%
    110.409 925.79
    220.188 111.84
    330.099 36.25
    440.056 63.56
    550.033 92.13
    下载: 导出CSV

    表  3  管电压为120 kV时X射线穿过钢板的透射率

    Table  3.   Transmittance of X-ray through steel plate at 120 kV tube voltage

    钢板数量钢板厚度/mm信号电压/V透射率/%
    110.731 331.25
    220.375 716.06
    330.218 79.35
    440.137 15.86
    550.090 13.85
    下载: 导出CSV

    表  4  管电压为160 kV时X射线穿过钢板的透射率

    Table  4.   Transmittance of X-ray through steel plate at 160 kV tube voltage

    钢板数量钢板厚度/mm信号电压/V透射率/%
    111.618 440.57
    220.902 622.63
    330.523 813.13
    440.273 16.85
    550.264 46.63
    下载: 导出CSV

    表  5  管电压为100 kV时X射线穿过钢化玻璃的透射率

    Table  5.   Transmittance of X-ray through tempered glass at 100 kV tube voltage

    玻璃数量玻璃厚度
    /mm
    信号电压/V透射率/%
    11.931.229 577.37
    23.860.992 962.48
    35.790.821 351.68
    47.720.689 843.41
    59.650.585 036.81
    下载: 导出CSV

    表  6  管电压为120 kV时X射线穿过钢化玻璃的透射率

    Table  6.   Transmittance of X-ray through tempered glass at 120 kV tube voltage

    玻璃数量玻璃厚度/mm信号电压/V透射率/%
    11.931.868 079.83
    23.861.544 065.98
    35.791.302 055.64
    47.721.109 047.39
    59.650.955 940.85
    下载: 导出CSV

    表  7  管电压为160 kV时X射线穿过钢化玻璃的透射率

    Table  7.   Transmittance of X-ray through tempered glass at 160 kV tube voltage

    玻璃数量玻璃厚度/mm信号电压/V透射率/%
    11.933.392 585.04
    23.862.655 966.58
    35.792.316 358.07
    47.722.177 854.59
    59.651.730 543.38
    下载: 导出CSV

    表  8  X射线管常见壳体材料的主要性能指标

    Table  8.   Main performance indexes of common shell materials of X-ray tube

    性能玻璃陶瓷
    抗拉强度/MPa80~200150~500
    热膨胀系数/(10−6K−13~135~10
    电阻率/(Ω·m)107~1081012~1013
    介电强度/(MV·m−130~60150~250
    导热系数/(W·cm−1·K−10.0042~0.02500.025~2.100
    软化温度/ ℃490~7001 200~1 900
    长期使用温度/℃150~250800~1700
    下载: 导出CSV

    表  9  不同管电压时X射线穿过屏蔽铅板的透射率

    Table  9.   Transmittance of X-ray through shielded lead plate at different tube voltages

    管电压/kV透射率/%
    1 mm厚铅板2 mm厚铅板3 mm厚铅板
    900.410 00.017 00.000 8
    1000.740 00.052 00.004 1
    1251.100 00.081 00.008 0
    1501.300 00.094 00.011 0
    1601.476 40.113 60.013 4
    下载: 导出CSV
  • [1] 张燕超,徐桂云,崔吉. 基于X射线数字成像技术的钢丝绳检测系统[J]. 无损探伤,2007,31(1):23-24. doi: 10.3969/j.issn.1671-4423.2007.01.005

    ZHANG Yanchao,XU Guiyun,CUI Ji. System used to detect steel wire rope based on X-ray digital imaging technology[J]. Nondestructive Testing Technology,2007,31(1):23-24. doi: 10.3969/j.issn.1671-4423.2007.01.005
    [2] 阮炜,郑明山. X射线检测钢丝绳成像系统设计[J]. 自动化技术与应用,2005(12):62-64. doi: 10.3969/j.issn.1003-7241.2005.12.021

    RUAN Wei,ZHENG Mingshan. Fault detection system for steel wire rope[J]. Techniques of Automation and Applications,2005(12):62-64. doi: 10.3969/j.issn.1003-7241.2005.12.021
    [3] 马宏伟,毛清华,张旭辉. 矿用强力带式输送机智能监控技术研究进展[J]. 振动. 测试与诊断,2016,36(2):213-219,396.

    MA Hongwei,MAO Qinghua,ZHANG Xuhui. Intelligent monitoring technology study process for steel cord conveyor belt in coal mine[J]. Journal of Vibration,Measurement & Diagnosis,2016,36(2):213-219,396.
    [4] LI Xianguo, MIAO Changyun, WANG Ji, et al. Automatic defect detection method for the steel cord conveyor belt based on its X-ray images[C]. The 2nd Asia-Pacific Conference on Wearable Computing Systems, Changsha, 2011: 536-539.
    [5] 崔广鑫,张宏伟. 基于X射线的钢丝绳芯输送带监测系统设计[J]. 工矿自动化,2012,38(4):70-72.

    CUI Guangxin,ZHANG Hongwei. Design of monitoring system of conveyor belt of steel rope core based on X-ray[J]. Industry and Mine Automation,2012,38(4):70-72.
    [6] 于中山. 基于X射线图像处理的煤矸识别技术研究[D]. 淮南: 安徽理工大学, 2020.

    YU Zhongshan. Research on recognition technology of coal and gangue based on X-ray image processing[D]. Huainan: Anhui University of Science and Technology, 2020.
    [7] ROBBEN C,KORTE J,WOTRUBA H,et al. Experiences in dry coarse coal separation using X-ray-transmission-based sorting[J]. International Journal of Coal Preparation and Utilization,2014,34(3/4):210-219.
    [8] 黄松,王敏,张静. X射线智能选矸技术在姚桥选煤厂的应用分析[J]. 山东煤炭科技,2020,38(8):186-188,197. doi: 10.3969/j.issn.1005-2801.2020.08.060

    HUANG Song,WANG Min,ZHANG Jing. Application of X-ray intelligent gangue separation technology in Yaoqiao Coal Preparation Plant[J]. Shandong Coal Science and Technology,2020,38(8):186-188,197. doi: 10.3969/j.issn.1005-2801.2020.08.060
    [9] 田冰. X射线称重原理与实现方法[J]. 上海电气技术,2012,5(3):53-58. doi: 10.3969/j.issn.1674-540X.2012.03.012

    TIAN Bing. Weighing principle and method of X-ray[J]. Journal of Shanghai Electric Technology,2012,5(3):53-58. doi: 10.3969/j.issn.1674-540X.2012.03.012
    [10] 任凤国,刘学红,任安祥,等. 提高矿用X射线核子秤计量稳定性的研究[J]. 工矿自动化,2018,44(8):24-27. doi: 10.13272/j.issn.1671-251x.2018010058

    REN Fengguo,LIU Xuehong,REN Anxiang,et al. Research on improving measurement stability of mine-used X-ray nuclear scale[J]. Industry and Mine Automation,2018,44(8):24-27. doi: 10.13272/j.issn.1671-251x.2018010058
    [11] 张秀峰,李太友. X射线灰分仪在选煤厂的应用分析[J]. 选煤技术,2020,48(3):22-26. doi: 10.16447/j.cnki.cpt.2020.03.006

    ZHANG Xiufeng,LI Taiyou. Application and analysis of the X-ray ash monitor in coal preparation plant[J]. Coal Preparation Technology,2020,48(3):22-26. doi: 10.16447/j.cnki.cpt.2020.03.006
    [12] KETELHODT L,BERGMANN C. Dual energy X-ray transmission sorting of coal[J]. Journal of The Southern African Institute of Mining and Metallurgy,2010,110(7):371-378.
    [13] 王鹏程. 放射物理与防护[M]. 2版. 北京: 人民卫生出版社, 2009.

    WANG Pengcheng. Radioactive physics and protection[M]. 2nd ed. Beijing: People's Medical Publishing House, 2009.
    [14] 范建中,杨金文. 用X射线实验仪研究X射线的衰减规律[J]. 太原师范学院学报(自然科学版),2011,10(3):95-98.

    FAN Jianzhong,YANG Jinwen. Application X-ray experiment to physics experiment teaching in college[J]. Journal of Taiyuan Normal University(Natural Science Edition),2011,10(3):95-98.
    [15] WANG Wenqing. Study of penetration window technology of explosion proof γ ray detector[J]. Journal of Convergence Information Technology,2012,7(15):366-374. doi: 10.4156/jcit.vol7.issue15.43
    [16] 陈捷频,陈钧. 隔爆外壳上玻璃透明件的无应力安装设计[J]. 电气防爆,2009(3):1-5. doi: 10.3969/j.issn.1004-9118.2009.03.001

    CHEN Jiepin,CHEN Jun. The flameproof installation design of transparent glass in explosion-proof enclosure without stress[J]. Electrical Explosion Protection,2009(3):1-5. doi: 10.3969/j.issn.1004-9118.2009.03.001
    [17] GB/T 3836.22—2017 爆炸性环境 第22部分: 光辐射设备和传输系统的保护措施[S].

    GB3836.22-2017 Explosive atmospheres-part 22: protection of equipment and transmission system using optical radiation[S].
    [18] 尹晓冬, 王福合. 物理学与世界进步[M]. 合肥: 安徽教育出版社, 2015.

    YIN Xiaodong, WANG Fuhe. Physics and world progress[M]. Hefei: Anhui Education Press, 2015.
    [19] 江源. 光源发展史[J]. 灯与照明,2010,34(1):54-62. doi: 10.3969/j.issn.1008-5521.2010.01.015

    JIANG Yuan. Evolution history of light source[J]. Light & Lighting,2010,34(1):54-62. doi: 10.3969/j.issn.1008-5521.2010.01.015
    [20] 王晶. X射线血液辐照技术及其临床应用[J]. 中国医疗器械信息,2019,25(21):37-39. doi: 10.3969/j.issn.1006-6586.2019.21.014

    WANG Jing. X-ray blood irradiation technique and its clinical applications[J]. China Medical Device Information,2019,25(21):37-39. doi: 10.3969/j.issn.1006-6586.2019.21.014
    [21] JANATPOUR K,DENNING L,NELSON K,et al. Comparison of X-ray vs. gamma irradiation of CPDA-1 red cells[J]. Vox Sanguinis,2005,89(4):215-219. doi: 10.1111/j.1423-0410.2005.00699.x
    [22] DODD B,VETTER R J. Replacement of 137Cs irradiators with X-ray irradiators[J]. Health Physics:The Radiation Safety Journal,2009,96(S2):27-30.
    [23] 杨强. 微型X射线源关键技术研究[D]. 成都: 成都理工大学, 2012.

    YANG Qiang. Researches on key technologies of miniature X-ray source[D]. Chengdu: Chengdu University of Technology, 2012.
    [24] 荣吉萍. 工业检测和安全检查用X射线管的现状与发展[J]. 真空电子,2015(1):42-45,50.

    RONG Jiping. Present situation and development of X-ray tubes for industrial detection and safety inspection[J]. Vacuum Electronics,2015(1):42-45,50.
    [25] STRAZNICKY I. Thermal modeling:a must at the design phase[J]. The Journal of Military Electronics & Computing,2008(6):16-19.
    [26] 李昊,项名珠,肖建生. 中等功率X射线源的热设计与热仿真[J]. 机械与电子,2014(7):27-30. doi: 10.3969/j.issn.1001-2257.2014.07.007

    LI Hao,XIANG Mingzhu,XIAO Jiansheng. Thermal design and simulation for medium-power X-ray source[J]. Machinery & Electronics,2014(7):27-30. doi: 10.3969/j.issn.1001-2257.2014.07.007
  • 加载中
图(2) / 表(9)
计量
  • 文章访问数:  110
  • HTML全文浏览量:  28
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-24
  • 修回日期:  2022-11-04
  • 网络出版日期:  2022-11-21

目录

    /

    返回文章
    返回