留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

综采工作面煤层三维模型动态修正方法研究

梁耍 王世博 葛世荣 柏永泰 谢洋

梁耍,王世博,葛世荣,等. 综采工作面煤层三维模型动态修正方法研究[J]. 工矿自动化,2022,48(7):58-65, 72.  doi: 10.13272/j.issn.1671-251x.17956
引用本文: 梁耍,王世博,葛世荣,等. 综采工作面煤层三维模型动态修正方法研究[J]. 工矿自动化,2022,48(7):58-65, 72.  doi: 10.13272/j.issn.1671-251x.17956
LIANG Shua, WANG Shibo, GE Shirong, et al. Study on dynamic modification method of 3D model of coal seam in fully mechanized working face[J]. Journal of Mine Automation,2022,48(7):58-65, 72.  doi: 10.13272/j.issn.1671-251x.17956
Citation: LIANG Shua, WANG Shibo, GE Shirong, et al. Study on dynamic modification method of 3D model of coal seam in fully mechanized working face[J]. Journal of Mine Automation,2022,48(7):58-65, 72.  doi: 10.13272/j.issn.1671-251x.17956

综采工作面煤层三维模型动态修正方法研究

doi: 10.13272/j.issn.1671-251x.17956
基金项目: 国家自然科学基金资助项目(51874279)。
详细信息
    作者简介:

    梁耍(1995-),男,安徽宿州人,硕士研究生,研究方向为矿山装备智能化,E-mail:liangs3422@163.com

    通讯作者:

    王世博(1979-),男,河北新河人,教授,博士,博士研究生导师,主要研究方向为智能矿山装备,E-mail:wangshb@cumt.edu.cn

  • 中图分类号: TD67

Study on dynamic modification method of 3D model of coal seam in fully mechanized working face

  • 摘要: 综采工作面的高精度煤层地理信息是实现智能无人开采的关键,但现阶段所构建的煤层三维模型垂向精度较低,无法满足智能开采的实际需求。针对该问题,提出了一种综采工作面煤层三维模型动态修正方法。将得到的初始煤层三维模型静态数据及开采过程中采煤机截割产生的动态数据融合,基于长短期记忆网络(LSTM)预测算法及其改进算法(基于空间卷积长短期记忆网络(Conv LSTM)、编码−解码长短期记忆网络(Encoder-Decoder LSTM)的预测算法),根据上一回采阶段的煤层数据,动态预测下一阶段未开采区的煤层底板曲面和煤层厚度。采用双层循环嵌套的网格搜索方法对上述3种预测算法进行参数调优,获取未开采区煤层底板曲面和煤层厚度的高精度垂向分布数据,作为煤层三维模型修正值,动态修正下一阶段未开采区的煤层三维模型;随着工作面不断开采,利用新获取的修正数据持续动态修正并更新初始煤层三维模型,从而提升初始煤层三维模型精度,使动态修正后的煤层三维模型能更准确地反映综采工作面实际煤层分布。以山西吕梁市某煤矿18201工作面煤层三维模型为例,采用提出的动态修正方法对该模型进行修正,在工作面推进方向16~23.2 m范围内,动态修正后的煤层底板平均误差为0.068 5 m,煤层顶板平均误差为0.076 m,相较于修正前的底板平均误差0.20 m、煤层厚度垂向平均误差0.40 m,动态修正后的煤层三维模型精度大大提升,证实了该修正方法的有效性。

     

  • 图  1  煤层三维模型动态修正原理

    Figure  1.  Dynamic correction principle of coal seam 3D model

    图  2  LSTM细胞的信息流动结构

    Figure  2.  Information flow structure of long-short term memory (LSTM) cell

    图  3  某煤矿18201工作面坐标系

    Figure  3.  Coordinate system of 18201 working face in a coal mine

    图  4  煤层数据误差分布

    Figure  4.  Error distribution of coal seam data

    图  5  采煤机部分历史截割轨迹

    Figure  5.  Part of the historical cutting trajectory of shearer

    图  6  LSTM预测算法结构

    Figure  6.  LSTM prediction algorithm structure

    图  7  超参数优化流程

    Figure  7.  Hyperparameters optimization flow

    图  8  工作面推进方向16.8 m处煤层底板曲面修正值预测结果

    Figure  8.  Prediction results of coal seam floor curved surface correction value at location of 16.8 m in advancing direction of working face

    图  9  工作面推进方向16.8 m处煤层厚度修正值预测结果

    Figure  9.  Prediction results of coal seam thickness correction value at location of 16.8 m in advancing direction of working face

    图  10  煤层三维模型修正后的底顶板误差分布

    Figure  10.  Error distribution of floor and top of coal seam 3D model after correction

    图  11  煤层三维模型修正前后底顶板预测误差分布占比

    Figure  11.  Proportion of error distribution of floor and top prediction before and after coal seam 3D model correction

    表  1  煤层底板曲面预测的数据组合方式

    Table  1.   Prediction data combination mode of coal seam floor curved surface

    类型序号输入序列数据标签序列数据
    训练集1f 1d1
    2f 2d2
    $\vdots $ $\vdots $ $\vdots $
    20f 20d20
    测试集1f 21d21
    2f 22d22
    $\vdots $ $\vdots $ $\vdots $
    10f 30d30
    下载: 导出CSV

    表  2  超参数候选值

    Table  2.   Candidate values of hyperparameters

    超参数候选值
    输入输出序列步长(Steps)(4:1), (3:1), (2:1), (1:1)
    隐藏层神经元个数(Units)100, 90, 70, 50, 30, 20, 10
    激活函数(Activation)ReLU, Sigmoid, Tanh, Softplus
    优化器(Optimizer)SGD, Adadelta, RMSProp, Adagrad, Adam
    损失函数(Loss)MAE
    训练周期(Epoch)10, 30, 50, 80, 100, 150, 200
    下载: 导出CSV

    表  3  煤层底板曲面修正值预测算法超参数优化结果

    Table  3.   Hyperparameters optimization results of prediction algorithms for coal seam floor curved surface correction value

    预测算法[Steps, Units, Activation,
    Optimizer, Epoch]
    MAE/m
    LSTM[(1, 1), 20, Softplus, Adadelta, 100]0.594
    Conv LSTM[(1, 1), 10, Softplus, Adagrad, 100]0.074
    Encoder-Decoder LSTM[(1, 1), 20, Softplus, Adagrad, 50]0.323
    下载: 导出CSV

    表  4  煤层厚度预测算法超参数优化结果

    Table  4.   Hyperparameter optimization results of coal seam thickness prediction algorithms

    预测算法[Steps, Units, Activation,
    Optimizer, Epoch]
    RMSE/m
    LSTM[(1, 1), 100, ReLU, Adagrad, 100]0.051
    Conv LSTM[(1, 1), 100,Softplus,Adagrad,90]0.051
    Encoder-Decoder LSTM[(1, 1), 100,ReLU,Adagrad,90]0.049
    下载: 导出CSV
  • [1] 葛世荣. 煤矿智采工作面概念及系统架构研究[J]. 工矿自动化,2020,46(4):1-9. doi: 10.13272/j.issn.1671-251x.2020030070

    GE Shirong. Research on concept and system architecture of smart mining workface in coal mine[J]. Industry and Mine Automation,2020,46(4):1-9. doi: 10.13272/j.issn.1671-251x.2020030070
    [2] 原长锁,王峰. 综采工作面透明化开采模式及关键技术[J]. 工矿自动化,2022,48(3):11-15,31.

    YUAN Changsuo,WANG Feng. Transparent mining mode and key technologies of fully mechanized working face[J]. Journal of Mine Automation,2022,48(3):11-15,31.
    [3] 王峰. 基于透明工作面的智能化开采概念、实现路径及关键技术[J]. 工矿自动化,2020,46(5):39-42.

    WANG Feng. Concept,realization path and key technologies of intelligent mining based on transparent longwall face[J]. Industry and Mine Automation,2020,46(5):39-42.
    [4] 袁亮. 煤炭精准开采科学构想[J]. 煤炭学报,2017,42(1):1-7.

    YUAN Liang. Scientific conception of precision coal mining[J]. Journal of China Coal Society,2017,42(1):1-7.
    [5] 毛善君,杨乃时,高彦清,等. 煤矿分布式协同“一张图”系统的设计和关键技术[J]. 煤炭学报,2018,43(1):280-286.

    MAO Shanjun,YANG Naishi,GAO Yanqing,et al. Design and key technology research of coal mine distributed cooperative "one map" system[J]. Journal of China Coal Society,2018,43(1):280-286.
    [6] ZHU Liangfeng,LI Mingjiang,LI Changling,et al. Coupled modeling between geological structure fields and property parameter fields in 3D engineering geological space[J]. Engineering Geology,2013,167(24):105-116.
    [7] TERCAN A,EÜNVER B,HINDISTAN M A,et al. Seam modeling and resource estimation in the coalfields of western Anatolia[J]. International Journal of Coal Geology,2013,112(2):94-106.
    [8] 贾庆仁,车德福,李佳徐,等. 动态精化的煤层三维建模方法[J]. 东北大学学报(自然科学版),2018,39(5):726-730.

    JIA Qingren,CHE Defu,LI Jiaxu,et al. Three-dimensional modeling method of coal seam with gradual refinement[J]. Journal of Northeastern University (Natural Science),2018,39(5):726-730.
    [9] 修春华,车德福,贾国兵. 含复杂地质构造的三维煤层动态建模方法[J]. 矿山测量,2015(6):52-55,59. doi: 10.3969/j.issn.1001-358X.2015.06.16

    XIU Chunhua,CHE Defu,JIA Guobing. Dynamic modeling method of 3D coal seam containing complex geological structure[J]. Mine Surveying,2015(6):52-55,59. doi: 10.3969/j.issn.1001-358X.2015.06.16
    [10] 刘万里,张学亮,王世博. 采煤工作面煤层三维模型构建及动态修正技术[J]. 煤炭学报,2020,45(6):1973-1983. doi: 10.13225/j.cnki.jccs.zn20.0364

    LIU Wanli,ZHANG Xueliang,WANG Shibo. Modeling and dynamic correction technology of 3D coal seam model for coal-mining face[J]. Journal of China Coal Society,2020,45(6):1973-1983. doi: 10.13225/j.cnki.jccs.zn20.0364
    [11] 孙振明,毛善君,祁和刚,等. 煤矿三维地质模型动态修正关键技术[J]. 煤炭学报,2014,39(5):918-924.

    SUN Zhenming,MAO Shanjun,QI Hegang,et al. Dynamic correction of coal mine three-dimensional geological model[J]. Journal of China Coal Society,2014,39(5):918-924.
    [12] 梁耍,王世博,谢洋,等. 基于LSTM的煤层厚度动态预测方法研究[J]. 煤炭科学技术,2021,49(增刊1):150-157.

    LIANG Shua,WANG Shibo,XIE Yang,et al. Dynamic prediction method of coal seam thickness based on LSTM[J]. Coal Science and Technology,2021,49(S1):150-157.
    [13] 李娟莉, 杜文勇, 谢嘉成, 等. 煤层数字高程模型构建与动态修正方法[J/OL]. 煤炭科学技术: 1-8[2022-05-20]. DOI: 10.13199/j.cnki.cst.2022-0147.

    LI Juanli, DU Wenyong, XIE Jiacheng, et al. Coal seam digital elevation model construction and dynamic correction method [J/OL]. Coal Science and Technology: 1-8[2022-05-20]. DOI: 10.13199/j.cnki.cst.2022-0147.
    [14] HOCHREITER S,SCHMIDHUBER J. Long short-term memory[J]. Neural Computation,1997,9(8):1735-1780. doi: 10.1162/neco.1997.9.8.1735
    [15] GRAVES A,SCHMIDHUBER J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures[J]. Neural Networks,2005,18(5/6):602-610. doi: 10.1016/j.neunet.2005.06.042
    [16] BAPPY J H,SIMONS C,NATARAJ L,et al. Hybrid LSTM and encoder–decoder architecture for detection of image forgeries[J]. IEEE Transactions on Image Processing,2019,28(7):3286-3300. doi: 10.1109/TIP.2019.2895466
    [17] 葛世荣,苏忠水,李昂,等. 基于地理信息系统(GIS) 的采煤机定位定姿技术研究[J]. 煤炭学报,2015,40(11):2503-2508.

    GE Shirong,SU Zhongshui,LI Ang,et al. Study on the positioning and orientation of a shearer based on geographic information system[J]. Journal of China Coal Society,2015,40(11):2503-2508.
    [18] 郝尚清,李昂,王世博,等. 采煤机惯性导航安装偏差对定位误差的影响[J]. 煤炭学报,2015, 40(8):1963-1968. doi: 10.13225/j.cnki.jccs.2014.1561

    HAO Shangqing,LI Ang,WANG Shibo,et al. Effects of shearer inertial navigation installation noncoincidence on shearer positioning error[J]. Journal of China Coal Society,2015, 40(8):1963-1968. doi: 10.13225/j.cnki.jccs.2014.1561
    [19] 王玉璟. 空间插值算法的研究及其在空气质量监测中的应用[D]. 开封: 河南大学, 2010.

    WANG Yujing. Research of spatial interpolation algorithm and its application in air quality monitoring[D]. Kaifeng: Henan University, 2010.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  185
  • HTML全文浏览量:  36
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-23
  • 修回日期:  2022-07-15
  • 网络出版日期:  2022-08-09

目录

    /

    返回文章
    返回