留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合近红外光谱的煤岩界面分布感知研究

杨恩 王世博 宣统

杨恩,王世博,宣统. 融合近红外光谱的煤岩界面分布感知研究[J]. 工矿自动化,2022,48(7):22-31, 42.  doi: 10.13272/j.issn.1671-251x.17950
引用本文: 杨恩,王世博,宣统. 融合近红外光谱的煤岩界面分布感知研究[J]. 工矿自动化,2022,48(7):22-31, 42.  doi: 10.13272/j.issn.1671-251x.17950
YANG En, WANG Shibo, XUAN Tong. Research on coal-rock interface distribution perception based on near-infrared spectra[J]. Journal of Mine Automation,2022,48(7):22-31, 42.  doi: 10.13272/j.issn.1671-251x.17950
Citation: YANG En, WANG Shibo, XUAN Tong. Research on coal-rock interface distribution perception based on near-infrared spectra[J]. Journal of Mine Automation,2022,48(7):22-31, 42.  doi: 10.13272/j.issn.1671-251x.17950

融合近红外光谱的煤岩界面分布感知研究

doi: 10.13272/j.issn.1671-251x.17950
基金项目: 国家重点研发计划项目(2018YFC0604503);国家自然科学基金联合基金项目(U1610251);江苏建筑职业技术学院博士专项(JYJBZX20-11)。
详细信息
    作者简介:

    杨恩(1986—),男,山东巨野人,讲师,博士,研究方向为煤岩识别,E-mail:yangen635@126.com

  • 中图分类号: TD42/67

Research on coal-rock interface distribution perception based on near-infrared spectra

  • 摘要: 近红外波段反射光谱能够基于煤岩本质物质属性不同所引起的反射光谱特征差异进行煤岩区分,识别精度高,实时性好,但尚未用于煤岩界面位置分布识别。针对采煤机记忆截割在后续截割循环中对煤岩界面自主判定的实际需求,研究了基于近红外反射光谱技术的煤岩界面分布感知技术。采用气煤、炭质泥页岩切割块样搭建了煤壁煤岩界面台架,设计了光纤准直镜−卤钨聚光光源一体式光谱探头并安装于采煤机机身,在采煤机0,3,7 m/s 3种行走速度和光谱探头3,4,5,6 °/s 4种扫描角速度下,测定了煤岩界面附近煤岩的近红外波段(1 000~2 500 nm)后向反射光谱曲线。对于光谱探头在煤壁上每条扫描轨迹中采集的所有反射光谱,在2 150~2 250 nm差异性特征波段,基于余弦距离模糊C均值聚类(CFCM)进行煤岩反射光谱无监督识别,根据每条扫描轨迹上各位置探测结果,基于高度差权重法和扫描轨迹方程确定煤岩界面点理论探测位置。研究结果表明:在采煤机和光谱探头每种运动状态下,光纤准直镜−卤钨聚光光源一体式光谱探头所采集气煤、炭质泥页岩近红外波段后向反射光谱均具有1 400,1 900,2 200 nm附近明显的差异性吸收谷谱带,随着探测入射角增大,煤岩反射光谱曲线均呈下降趋势;同种采煤机行走速度下,随着光谱探头扫描角速度增大,以及同种光谱探头扫描角速度下,随着采煤机行走速度增大,煤岩反射光谱曲线整体均趋于平缓;基于CFCM、高度差权重法、煤壁扫描轨迹方程可实现采煤机和光谱探头运动状态下煤岩界面点的快速精确探测,其中光谱探头3,4,5 °/s 3种扫描角速度下煤岩界面点探测结果的均方根误差不超过1.5 cm,为近红外反射光谱技术应用于煤岩界面分布的精确高效感知提供了参考。

     

  • 图  1  典型煤岩双向反射分布

    Figure  1.  Bidirectional reflectance of typical types of coal and rock

    图  2  煤岩反射光谱采集实验平台

    Figure  2.  Experimental platform of coal-rock reflectance spectra detection

    图  3  光谱探头探测模拟煤壁横向视图

    Figure  3.  Transverse view of spectrum detector detecting simulated coal wall

    图  4  光谱探头煤壁扫描轨迹

    Figure  4.  Scanning trajectories on the coal wall by spectrum detector

    图  5  采煤机静止(v=0)时光谱探头各扫描角速度下煤岩代表性近红外后向反射光谱

    Figure  5.  Representative near-infrared reflectance spectra in the backward direction of coal and rock under each scanning angular velocity of spectrum detector when the shearer is stationary(v=0)

    图  6  采煤机静止(v=0)时光谱探头各扫描角速度下煤岩界面探测结果

    Figure  6.  Detection results of coal-rock interface under each scanning angular velocity of spectrum detector when the shearer is stationary(v=0)

    图  7  采煤机以3 m/s速度行走时光谱探头各扫描角速度下煤岩代表性近红外后向反射光谱

    Figure  7.  Representative near-infrared reflectance spectra in the backward direction of coal and rock under each scanning angular velocity of spectrum detector when the shearer moves at 3 m/s

    图  8  采煤机以7 m/s速度行走时光谱探头各扫描角速度下煤岩代表性近红外后向反射光谱

    Figure  8.  Representative near-infrared reflectance spectra in the backward direction of coal and rock under each scanning angular velocity of spectrum detector when the shearer moves at 7 m/s

    图  9  采煤机以3 m/s速度行走时光谱探头各扫描角速度下煤岩界面探测结果

    Figure  9.  Detection results of coal-rock interface under each scanning angular velocity of spectrum detector when the shearer moves at 3 m/s

    图  10  采煤机以7 m/s速度行走时光谱探头各扫描角速度下煤岩界面探测结果

    Figure  10.  Detection results of coal-rock interface under each scanning angular velocity of spectrum detector when the shearer moves at 7 m/s

    图  11  采煤机各运动状态下煤岩界面分布探测结果评价

    Figure  11.  Evaluation of detection results of coal-rock interface distribution under each movement state of the shearer

  • [1] 葛世荣. 采煤机技术发展历程(六)−煤岩界面探测[J]. 中国煤炭,2020,46(11):10-24. doi: 10.3969/j.issn.1006-530X.2020.11.002

    GE Shirong. The development history of coal shearer technology(part six):coal-rock interface detection[J]. China Coal,2020,46(11):10-24. doi: 10.3969/j.issn.1006-530X.2020.11.002
    [2] 张强,张润鑫,刘峻铭,等. 煤矿智能化开采煤岩识别技术综述[J]. 煤炭科学技术,2022,50(2):1-26. doi: 10.13199/j.cnki.cst.2021-1333

    ZHANG Qiang,ZHANG Runxin,LIU Junming,et al. Review on coal and rock identification technology for intelligent mining in coal mines[J]. Coal Science and Technology,2022,50(2):1-26. doi: 10.13199/j.cnki.cst.2021-1333
    [3] 庞义辉. 综采工作面智能化发展现状与展望[J]. 智能矿山,2020,1(1):21-29.

    PANG Yihui. Intelligent development situation and prospect of fully mechanized mining face[J]. Journal of Intelligent Mine,2020,1(1):21-29.
    [4] SONG Zeyang,KUENZER C. Spectral reflectance (400-2 500 nm) properties of coals,adjacent sediments,metamorphic and pyrometamorphic rocks in coal-fire areas:a case study of Wuda coalfield and its surrounding areas,northern China[J]. International Journal of Coal Geology,2017,171:142-152. doi: 10.1016/j.coal.2017.01.008
    [5] MAO Yachun,MA Baodong,LIU Shanjun,et al. Study and validation of a remote sensing model for coal extraction based on reflectance spectrum features[J]. Canadian Journal of Remote Sensing,2014,40(5):327-335. doi: 10.1080/07038992.2014.979486
    [6] MILTON E J,SCHAEPMAN M E,ANDERSON K,et al. Progress in field spectroscopy[J]. Remote Sensing of Environment,2009,113:S92-S109. doi: 10.1016/j.rse.2007.08.001
    [7] 杨恩,王世博,葛世荣. 典型块状煤的可见−近红外光谱特征研究[J]. 光谱学与光谱分析,2019,39(6):1717-1723.

    YANG En,WANG Shibo,GE Shirong. Study on the visible and near-infrared spectra of typical types of lump coal[J]. Spectroscopy and Spectral Analysis,2019,39(6):1717-1723.
    [8] 杨恩,王世博,葛世荣. 典型煤系岩石的可见−近红外光谱特征研究[J]. 工矿自动化,2019,45(3):45-51,89. doi: 10.13272/j.issn.1671-251x.2018090047

    YANG En,WANG Shibo,GE Shirong. Research on visible-near infrared spectrum features of typical coal measures rocks[J]. Industry and Mine Automation,2019,45(3):45-51,89. doi: 10.13272/j.issn.1671-251x.2018090047
    [9] YANG En,GE Shirong,WANG Shibo. Characterization and identification of coal and carbonaceous shale using visible and near-infrared reflectance spectroscopy[J]. Journal of Spectroscopy,2018(2):1-13.
    [10] 杨恩,王世博,葛世荣,等. 煤岩界面的高光谱识别原理[J]. 煤炭学报,2018,43(增刊2):646-653. doi: 10.13225/j.cnki.jccs.2018.0098

    YANG En,WANG Shibo,GE Shirong,et al. Study on the principle of hyperspectral recognition of coal-rock interface[J]. Journal of China Coal Society,2018,43(S2):646-653. doi: 10.13225/j.cnki.jccs.2018.0098
    [11] 杨恩,王世博,葛世荣,等. 基于反射光谱的煤岩感知实验研究[J]. 煤炭学报,2019,44(12):3912-3920.

    YANG En,WANG Shibo,GE Shirong,et al. Experimental study on coal-rock perception based on reflectance spectroscopy[J]. Journal of China Coal Society,2019,44(12):3912-3920.
    [12] GOETZ A F H,CURTISS B,SHILEY D A. Rapid gangue mineral concentration measurement over conveyors by NIR reflectance spectroscopy[J]. Minerals Engineering,2009,22(5):490-499. doi: 10.1016/j.mineng.2008.12.013
    [13] FANG Qian,HONG Hanlie,ZHAO Lulu,et al. Visible and near-infrared reflectance spectroscopy for investigating soil mineralogy:a review[J]. Journal of Spectroscopy,2018,2018:1-14.
    [14] PASQUINI C. Near infrared spectroscopy:a mature analytical technique with new perspectives:a review[J]. Analytica Chimica Acta,2018,1026:8-36. doi: 10.1016/j.aca.2018.04.004
    [15] SCHOPFER J,DANGEL S,KNEUBÜHLER M,et al. The improved dual-view field goniometer system FIGOS[J]. Sensors,2008,8:5120-5140. doi: 10.3390/s8085120
    [16] CLOUTIS E A,PIETRASZ V B,KIDDELL C,et al. Spectral reflectance "deconstruction" of the Murchison CM2 carbonaceous chondrite and implications for spectroscopic investigations of dark asteroids[J]. Icarus,2018,305:203-224. doi: 10.1016/j.icarus.2018.01.015
    [17] 赵子傑,赵云升. 不同粒径沙地表面双向反射特性研究[J]. 物理学报,2014,63(18):435-441.

    ZHAO Zijie,ZHAO Yunsheng. Bidirectional reflectance of sandy land surface with different particle sizes[J]. Acta Physica Sinica,2014,63(18):435-441.
    [18] 路鹏,陈圣波,崔腾飞,等. 月球表面矿物二向性反射特性实验研究[J]. 岩石学报,2016,32(1):107-112.

    LU Peng,CHEN Shengbo,CUI Tengfei,et al. Experimental study on bidirectional reflectance characteristics of minerals on lunar surface[J]. Acta Petrologica Sinica,2016,32(1):107-112.
    [19] 杨恩,王世博. 典型煤的近红外反射光谱特征的方向性研究[J]. 光谱学与光谱分析,2022,42(3):847-858.

    YANG En,WANG Shibo. Study on directional near-infrared reflectance spectra of typical types of coal[J]. Spectroscopy and Spectral Analysis,2022,42(3):847-858.
    [20] 梁吉智,韩培毅,郭天骏,等. 综采工作面智能化装备关键技术与应用[J]. 煤炭科学技术,2021,49(增刊1):59-62.

    LIANG Jizhi,HAN Peiyi,GUO Tianjun,et al. Key technology and application of intelligent equipment in fully-mechanized coal mining face[J]. Coal Science and Technology,2021,49(S1):59-62.
    [21] 杨恩,王世博,王赛亚,等. 典型煤岩反射光谱无监督感知方法研究[J]. 工矿自动化,2020,46(1):50-58. doi: 10.13272/j.issn.1671-251x.2019050078

    YANG En,WANG Shibo,WANG Saiya,et al. Research on unsupervised sensing methods of typical coal and rock based on reflectance spectroscopy[J]. Industry and Mine Automation,2020,46(1):50-58. doi: 10.13272/j.issn.1671-251x.2019050078
    [22] WU Fang,WEI Liangshu,HUANG Junjie,et al. Optimized fuzzy C-means clustering algorithm for the interpretation of the near-infrared spectra of rocks[J]. Spectroscopy Letters,2017,50(5):270-274. doi: 10.1080/00387010.2017.1317271
    [23] 李玉,甄畅,石雪,等. 基于熵加权K−means全局信息聚类的高光谱图像分类[J]. 中国图象图形学报,2019,24(4):630-638. doi: 10.11834/jig.180502

    LI Yu,ZHEN Chang,SHI Xue,et al. Hyperspectral image classification algorithm based on entropy weighted K-means with global information[J]. Journal of Image and Graphics,2019,24(4):630-638. doi: 10.11834/jig.180502
  • 加载中
图(11)
计量
  • 文章访问数:  185
  • HTML全文浏览量:  31
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-18
  • 修回日期:  2022-07-07
  • 网络出版日期:  2022-07-19

目录

    /

    返回文章
    返回