留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无线通信定位一体化进展及其在煤矿井下应用分析

胡延军 赵英柱 杨一雪 翟雨双 李世银

胡延军,赵英柱,杨一雪,等. 无线通信定位一体化进展及其在煤矿井下应用分析[J]. 工矿自动化,2022,48(9):123-133.  doi: 10.13272/j.issn.1671-251x.17945
引用本文: 胡延军,赵英柱,杨一雪,等. 无线通信定位一体化进展及其在煤矿井下应用分析[J]. 工矿自动化,2022,48(9):123-133.  doi: 10.13272/j.issn.1671-251x.17945
HU Yanjun, ZHAO Yingzhu, YANG Yixue, et al. Development of integrated localization and wireless communication and its application in the underground coal mine[J]. Journal of Mine Automation,2022,48(9):123-133.  doi: 10.13272/j.issn.1671-251x.17945
Citation: HU Yanjun, ZHAO Yingzhu, YANG Yixue, et al. Development of integrated localization and wireless communication and its application in the underground coal mine[J]. Journal of Mine Automation,2022,48(9):123-133.  doi: 10.13272/j.issn.1671-251x.17945

无线通信定位一体化进展及其在煤矿井下应用分析

doi: 10.13272/j.issn.1671-251x.17945
基金项目: 山东省重大科技创新工程项目(2019JZZY020505)。
详细信息
    作者简介:

    胡延军(1974—),男,浙江开化人,副教授,博士,研究方向为煤矿井下无线定位、煤矿物联网技术等,E-mail:yjhu@cumt.edu.cn

  • 中图分类号: TD655/67

Development of integrated localization and wireless communication and its application in the underground coal mine

  • 摘要: 无线通信定位一体化(ILWC)是一种基于硬件资源及软件信息共享以实现定位与通信功能协同的新型信息技术。通过简述无线通信技术和定位技术的研究进展,揭示了ILWC技术是无线通信系统承载业务拓展的必然结果。给出了不同研究对于ILWC技术的定义和内涵,明确了ILWC核心思想为“硬件集成,软件共享”,按照设备复用和深度融合2个阶段综述了ILWC技术的研究进展。结合煤矿井下场景的特殊性,提出了煤矿井下ILWC概念:基于时间、空间、频谱、计算等资源共享,具有场景自动感知和资源动态自适应分配机制的通信功能和定位功能融合技术。对煤矿井下ILWC在大巷、中央变电所、井底车场、采煤工作面等场景的适应性进行了讨论,指出井下ILWC面临的挑战是煤矿井下无线信道复杂性、基站部署不均衡性、井下复杂场景精准判别。

     

  • 图  1  移动通信技术发展

    Figure  1.  Development of mobile communication technologies

    图  2  无线通信技术传输速率及能量损耗

    Figure  2.  Transmit speed and energy consumption of wireless communication technologies

    图  3  常用的定位计算方法

    Figure  3.  Frequently-used localization calculation methods

    图  4  部分室内定位算法的精度发展

    Figure  4.  Precision development of some indoor localization algorithms

    图  5  设备复用阶段ILWC技术

    Figure  5.  ILWC technology in equipment reuse stage

    表  1  设备复用阶段ILWC研究进展

    Table  1.   Research progress of ILWC in equipment reuse stage

    文献ILWC复用方式网络功能与定位性能
    无线网络定位信息
    [43] RFID 相位差 维持双向通信功能,理想定位精度在0.01 m以内
    [28,44] WiFi AOA WiFi 带宽不损失,定位精度达 0.5 m
    [45] WiFi AOA+RSSI WiFi 带宽不损失,室内定位精度达0.4 m
    [46] WiFi 指纹 WiFi带宽不损失,定位精度为0.92~1.92 m
    [29,47] Bluetooth 指纹 提供指纹信息,能耗增大,定位精度为1~2 m
    [48] ZigBee TOA 能耗增大,定位精度小于1.54 m
    [32] UWB TDOA 抗多径干扰,定位精度为0.18~0.33 m
    [31] UWB 指纹+TOA 抗多径干扰,定位复杂度增加,定位精度在0.12 m以内
    [49] 5G TOA 高带宽,抗多径干扰,定位精度在 1.19 m以内
    下载: 导出CSV

    表  2  深度融合阶段ILWC研究进展

    Table  2.   Research progress of ILWC in deep fusion stage

    文献方向研究进展
    [50-51] 感知通信共存性能极限 提出雷达和通信联合信号的模型假设,定义雷达速率评估的CRLB准则
    [52] 通信感知工作频率分配 提出基于通信感知工作频率重叠的动态频谱分配方法
    [53] 通信与感知功率等资源分配 提出针对协同波束成形和功率分配问题的设计方法
    [60] 通信辅助定位 利用节点之间的通信来辅助定位
    [61-64] 位置辅助通信 研究揭示了位置信息可用于认知无线网络,以优化网络性能
    [58-59] 通信感知波束成形 提出混合波束成形与MIMO技术设计模型,建议在非凸常数模算法和功率约束下设计模拟和数字波束成形器
    下载: 导出CSV

    表  3  煤矿井下不同场景ILWC技术适用性

    Table  3.   Applicability of ILWC technology in different scenes in underground coal mine

    煤矿场景无线网络定位方法
    井下大巷5GAOA,TOA等非指纹方法
    中央变电所UWBTOF,TDOA
    井底车场ZigBeeTOA,TDOA
    采煤工作面WiFi,UWBAOA,AOA与TOA/TDOA融合方法
    下载: 导出CSV
  • [1] 谢和平,吴立新,郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报,2019,44(7):1949-1960.

    XIE Heping,WU Lixin,ZHENG Dezhi. Prediction on the energy consumption and coal demand of China in 2025[J]. Journal of China Coal Society,2019,44(7):1949-1960.
    [2] 刘峰,郭林峰,赵路正. 双碳背景下煤炭安全区间与绿色低碳技术路径[J]. 煤炭学报,2022,47(1):1-15. doi: 10.13225/j.cnki.jccs.yg22.0016

    LIU Feng,GUO Linfeng,ZHAO Luzheng. Research on coal safety range and green low-carbon technology path under the dual-carbon background[J]. Journal of China Coal Society,2022,47(1):1-15. doi: 10.13225/j.cnki.jccs.yg22.0016
    [3] 康瑛石,吴吉义,王海宁. 基于云计算的一体化煤矿安全监管信息系统[J]. 煤炭学报,2011,36(5):873-877.

    KANG Yingshi,WU Jiyi,WANG Haining. Overall coalmine safety monitoring and management system based on cloud computing[J]. Journal of China Coal Society,2011,36(5):873-877.
    [4] 国家矿山安全监察局. 国家矿山安全监察局综合司关于加强煤矿井下人员位置监测管理工作的通知[EB/OL]. [2022-04-20]. https://www.chinamine-safety.gov.cn/zfxxgk/fdzdgknr/tzgg/202110/t20211028_401001.shtml.

    National Mine Safety Administration. Comprehensive Department of National Mine Safety Administration: notice of strengthening personnel location monitoring management of coal mine underground[EB/OL]. [2022-04-20]. https://www.chinamine-safety.gov.cn/zfxxgk/fdzdgknr/tzgg/202110/t20211028_401001.shtml.
    [5] 山东煤矿安全监察局, 山东省能源局. 关于开展煤矿智能化和人员精确定位系统建设重点督查的通知[EB/OL]. [2022-04-20]. http://finance.sina.com.cn/money/future/indu/2020-04-15/doc-iirczymi6412571.shtml.

    Shandong Bureau of the National Mine Safety Administration, Energy Administration of Shandong Province. Notice of developing extensive supervision of coal mine intelligence and precision personnel location system construction[EB/OL]. [2022-04-20]. http://finance.sina.com.cn/money/future/indu/2020-04-15/doc-iirczymi6412571.shtml.
    [6] 中国煤炭工业协会. 中国煤炭工业协会关于落实能源领域5G应用实施方案的通知[EB/OL]. [2022-04-21]. https://coal.in-en.com/html/coal-2602525.shtml.

    China National Coal Association. China National Coal Association: notice of executing 5G application scheme for energy field[EB/OL]. [2022-04-21]. https://coal.in-en.com/html/coal-2602525.shtml.
    [7] RUI L,ELLIPTIC K C. Localization:performance study and optimum receiver placement[J]. IEEE Transactions on Signal Processing,2014,62(18):4673-4688. doi: 10.1109/TSP.2014.2338835
    [8] FOY W H. Position-location solutions by taylor-series estimation[J]. IEEE Transactions on Aerospace Electronic Systems,2007(2):187-194.
    [9] TORRIERI D J. Statistical theory of passive location systems[J]. IEEE Transactions on Aerospace,1984,20(2):183-198.
    [10] GODRICH H,HAIMOVICH A M,BLUM R S. Target localization accuracy gain in MIMO radar-based systems[J]. IEEE Transactions on Information Theory,2010,56(6):2783-2803. doi: 10.1109/TIT.2010.2046246
    [11] 房嘉奇,冯大政,李进. TDOA中的修正牛顿及泰勒级数方法[J]. 西安电子科技大学学报,2016,43(6):27-33.

    FANG Jiaqi,FENG Dazheng,LI Jin. Research on modified Newton and Taylor-series methods in TDOA[J]. Journal of Xidian University,2016,43(6):27-33.
    [12] 夏斌,刘承鹏,孙文珠,等. 基于多元变量泰勒级数展开模型的定位算法[J]. 电子科技大学学报,2016,45(6):888-892. doi: 10.3969/j.issn.1001-0548.2016.06.002

    XIA Bin,LIU Chengpeng,SUN Wenzhu,et al. Localization algorithm based on multivariable Taylor series expansion model[J]. Journal of University of Electronic Science and Technology of China,2016,45(6):888-892. doi: 10.3969/j.issn.1001-0548.2016.06.002
    [13] 张晓玲,余檑,吴喜亮,等. 快速高精度双站距离空间投影定位算法[J]. 电子与信息学报,2016,38(9):2330-2335.

    ZHANG Xiaoling,YU Lei,WU Xiliang,et al. Fast and high precision multi-target positioning via imaging strategy[J]. Journal of Electronics & Information Technology,2016,38(9):2330-2335.
    [14] SO H C,CHAN F K W. A generalized subspace approach for mobile positioning with time-of-arrival measurements[J]. IEEE Transactions on Signal Processing,2007,55(10):5103-5107. doi: 10.1109/TSP.2003.896092
    [15] ZOUBIR A,WANG Yide,CHARGE P. Efficient subspace-based estimator for localization of multiple incoherently distributed sources[J]. IEEE Transactions on Signal Processing,2008,56(2):532-542. doi: 10.1109/TSP.2007.907877
    [16] CHALLA R N, SHAMSUNDER S. High-order subspace-based algorithms for passive localization of near-field sources[C]. Conference on Signals, Systems and Computers, Pacific Grove, 1995: 777-781.
    [17] CHEUNG K W,SO H C,MA W K,et al. Least squares algorithms for time-of-arrival-based mobile location[J]. IEEE Transactions on Signal Processing,2004,52(4):1121-1130. doi: 10.1109/TSP.2004.823465
    [18] HUANG Yiteng,BENESTY J,ELKO G W,et al. Real-time passive source localization:a practical linear-correction least-squares approach[J]. IEEE Transactions on Speech,2001,9(8):943-956.
    [19] CHEUNG K W, SO H C, MA W K, et al. Received signal strength based mobile positioning via constrained weighted least squares[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, Hong Kong, 2003: V-137-V-140.
    [20] TONG W. A perspective of wireless innovations in the next decade[EB/OL]. [2022-04-25]. https://www.comsoc.org/ieee-globecom-2018-videos.
    [21] XIAO Zhiqiang,ZENG Yong. An overview on integrated localization and communication towards 6G[J]. Science China Information Sciences,2020,65(3):1-46.
    [22] YANG Jie,XU Jing,LI Xiao,et al. Integrated communication and localization in millimeter-wave systems[J]. Frontiers of Information Technology & Electronic Engineering,2021,22(4):457-470.
    [23] DE-LIMA C,BELOT D,BERKVENS R,et al. Convergent communication,sensing and localization in 6G systems:an overview of technologies,opportunities and challenges[J]. IEEE Access,2021,9:26902-26925. doi: 10.1109/ACCESS.2021.3053486
    [24] SCHMIDT R,SCHMIDT R O. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas,1986,34(3):276-280. doi: 10.1109/TAP.1986.1143830
    [25] ROY R,KAILATH T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics,Speech,and Signal Processing,1989,37(7):984-995. doi: 10.1109/29.32276
    [26] MEI Xiaojun,WU Huafeng,XIAN Jiangfeng. Matrix factorization-based target localization via range measurements with uncertainty in transmit power[J]. IEEE Wireless Communications Letters,2020,9(10):1611-1615. doi: 10.1109/LWC.2020.2998609
    [27] ZARE M,BATTULWAR R,SEAMONS J,et al. Applications of wireless indoor positioning systems and technologies in underground mining:a review[J]. Mining Metallurgy Exploration,2021,38(6):2307-2322. doi: 10.1007/s42461-021-00476-x
    [28] SOLTANAGHAEI E, KALYANARAMAN A, WHITEHOUSE K. Multipath triangulation: decimeter-level WiFi localization and orientation with a single unaided receiver[C]. The 16th Annual International Conference on Mobile Systems, Applications, and Services, Munich, 2018: 376-388.
    [29] GIULIANO R,CARDARILLI G C,CESARINI C,et al. Indoor localization system based on bluetooth low energy for museum applications[J]. Electronics,2020,9(6):1055-1075. doi: 10.3390/electronics9061055
    [30] HAJIAKHONDI-MEYBODI Z, SALIMIBENI M, PLATANIOTIS K N, et al. Bluetooth low energy-based angle of arrival estimation via switch antenna array for indoor localization[C]. IEEE 23rd International Conference on Information Fusion, Rustenburg, 2020: 1-6.
    [31] DJOSIC S,STOJANOVIC I,JOVANOVIC M,et al. Fingerprinting-assisted UWB-based localization technique for complex indoor environments[J]. Expert Systems with Applications,2021,167:114188-114202. doi: 10.1016/j.eswa.2020.114188
    [32] GROBWINDHAGER B, STOCKER M, RATH M, et al. SnapLoc: an ultra-fast UWB-based indoor localization system for an unlimited number of tags[C]. The 18th ACM/IEEE International Conference on Information Processing in Sensor Networks, Montreal, 2019: 61-72.
    [33] PÉREA-SOLANO J J,EZPELETA S,CLAVER J M. Indoor localization using time difference of arrival with UWB signals and unsynchronized devices[J]. Ad Hoc Networks,2020,99:102067-102077. doi: 10.1016/j.adhoc.2019.102067
    [34] XU Bin,SUN Guodong,YU Ran,et al. High-accuracy TDOA-based localization without time synchronization[J]. IEEE Transactions on Parallel Distributed Systems,2012,24(8):1567-1576.
    [35] HANSSENS B,PLETS D,TANGHE E,et al. An indoor variance-based localization technique utilizing the UWB estimation of geometrical propagation parameters[J]. IEEE Transactions on Antennas & Propagation,2018,66(5):2522-2533.
    [36] TAO Bo,WU Haibing,GONG Zeyu,et al. An RFID-based mobile robot localization method combining phase difference and readability[J]. IEEE Transactions on Automation Science,2020,18(3):1406-1416.
    [37] AYYALASOMAYAJULA R, VASISHT D, BHARADIA D. BLoc: CSI-based accurate localization for BLE tags[C]. The 14th International Conference on Emerging Networking Experiments and Technologies, Heraklion, 2018: 126-138.
    [38] THAMMAVONG L, KHONGSOMBOON K, PROMWONG S. Quantitative evaluation of Zigbee localization based on weighted centroid with quadratic means[C]. Global Wireless Summit, Chiang Rai, 2018: 323-326.
    [39] PUJIHARSONO H,UTAMI D,AINUL R D. Trilateration method for estimating location in RSSI-based indoor positioning system using Zigbee protocol[J]. Jurnal Infotel,2020,12(1):1-6.
    [40] KOKKINIS A,KANARIS L,LIOTTA A,et al. RSS indoor localization based on a single access point[J]. Sensors,2019,19(17):3711-3725. doi: 10.3390/s19173711
    [41] CHEN Hao,ZHANG Yifan,LI Wei,et al. ConFi:convolutional neural networks based indoor Wi-Fi localization using channel state information[J]. IEEE Access,2017,5:18066-18074. doi: 10.1109/ACCESS.2017.2749516
    [42] ZHANG Tieyang, ZHANG Kuiyuan, LIU Dongjing, et al. CSI-Based calibration free localization with rotating antenna for coal mine[C]. International Conference on Wireless Algorithms, Systems, and Applications, Nanjing, 2021: 263-274.
    [43] HEKIMIAN-WILLIAMS C, GRANT B, LIU Xiuwen, et al. Accurate localization of RFID tags using phase difference[C]. IEEE International Conference on RFID, Orlando, 2010: 89-96.
    [44] GJENGSET J, XIONG Jie, MCPHILLIPS G, et al. Phaser: enabling phased array signal processing on commodity Wi-Fi access points[C]. The 20th Annual International Conference on Mobile Computing and Networking, Maui, 2014: 153-164.
    [45] KOTARU M, JOSHI K, BHARADIA D, et al. Spotfi: decimeter level localization using wifi[C]. The ACM Conference on Special Interest Group on Data Communication, London, 2015: 269-282.
    [46] HSIEH C-H,CHEN J-Y,NIEN B-H. Deep learning-based indoor localization using received signal strength and channel state information[J]. IEEE Access,2019,7:33256-33267. doi: 10.1109/ACCESS.2019.2903487
    [47] WANG Yixin, YE Qiang, CHENG Jie, et al. RSSI-based bluetooth indoor localization[C]. The 11th International Conference on Mobile Ad-hoc and Sensor Networks, Shenzhen, 2015: 165-171.
    [48] AINUL R D,UTAMI D,PUJIHARSONO H. Trilateration method for estimating location in RSSI-based indoor positioning system using Zigbee protocol[J]. Jurnal Infotel,2020,12(1):1-6.
    [49] SHAMAEI K,KASSAS Z M. Receiver design and time of arrival estimation for opportunistic localization with 5G signals[J]. IEEE Transactions on Wireless Communications,2021,20(7):4716-4731. doi: 10.1109/TWC.2021.3061985
    [50] CHIRIYATH A R,PAUL B,JACYNA G M,et al. Inner bounds on performance of radar and communications co-existence[J]. IEEE Transactions on Signal Processing,2015,64(2):464-474.
    [51] KOBAYASHI M, HAMAD H, KRAMER G, et al. Joint state sensing and communication over memoryless multiple access channels[C]. IEEE International Symposium on Information Theory, Paris, 2019: 270-274.
    [52] TURLAPATY A, JIN Yuanwei. A joint design of transmit waveforms for radar and communications systems in coexistence[C]. Radar Conference, Cincinnati, 2014: 0315-0319.
    [53] KWON G,CONTI A,PARK H,et al. Joint communication and localization in millimeter wave networks[J]. IEEE Journal of Selected Topics in Signal Processing,2021,15(6):1439-1454. doi: 10.1109/JSTSP.2021.3113115
    [54] ZHOU Yifan,ZHOU Huilin,ZHOU Fuhui,et al. Resource allocation for a wireless powered integrated radar and communication system[J]. IEEE Wireless Communications Letters,2019,8(1):253-256. doi: 10.1109/LWC.2018.2868819
    [55] ZHANG J A, CANTONI A, HUANG Xiaojing, et al. Framework for an innovative perceptive mobile network using joint communication and sensing[C]. IEEE 85th Vehicular Technology Conference, Sydney, 2017: 1-5.
    [56] RAHMAN M L,ZHANG J A,HUANG Xiaojing,et al. Framework for a perceptive mobile network using joint communication and radar sensing[J]. IEEE Transactions on Aerospace,2019,56(3):1926-1941.
    [57] STURM C,WIESBECK W. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing[J]. Proceedings of the IEEE,2011,99(7):1236-1259. doi: 10.1109/JPROC.2011.2131110
    [58] ZHANG J A,HUANG Xiaojing,GUO Yingjie,et al. Multibeam for joint communication and sensing using steerable analog antenna arrays[J]. IEEE Transactions on Vehicular Technology,2018,68(1):671-685.
    [59] LIU Fan, MASOUROS C. Hybrid beamforming with sub-arrayed MIMO radar: enabling joint sensing and communication at mmwave band[C]. IEEE International Conference on Acoustics, Brighton, 2018: 7770-7774.
    [60] DRAWIL N M,BASIR O. Intervehicle-communication-assisted localization[J]. IEEE Transactions on Intelligent Transportation Systems,2010,11(3):678-691. doi: 10.1109/TITS.2010.2048562
    [61] DAMMANN A, AGAPIOU G, BASTOS J, et al. WHERE2 location aided communications[C]. The 19th European Wireless Conference, Guildford, 2013: 1-8.
    [62] CELEBI H,ARSLAN H. Utilization of location information in cognitive wireless networks[J]. IEEE Wireless Communications Letters,2007,14(4):6-13. doi: 10.1109/MWC.2007.4300977
    [63] SLOCK D. Location aided wireless communications[C]. The 5th International Symposium on Communications, Control and Signal Processing, Rome, 2012: 1-6.
    [64] HE Jiguang,WYMEERSCH H,JUNTTI M. Leveraging location information for RIS-aided mmwave MIMO communications[J]. IEEE Wireless Communications Letters,2021,10(7):1380-1384. doi: 10.1109/LWC.2021.3067474
    [65] Federal Communications Commission. Revision of part 15 of the commission's rules regarding ultra-wideband transmission system[S].
    [66] ECC Decision. The harmonised conditions for devices using ultra-wideband(UWB) technology in bands below 10.6 GHz[EB/OL]. [2022-04-25]. https://www.docin.com/p-468228964.html.
    [67] ZWIRELLO L,SCHIPPER T,HARTER M,et al. UWB localization system for indoor applications:concept,realization and analysis[J]. Journal of Electrical and Computer Engineering,2012,2012(4):1-11.
    [68] 吴启晖,赵春明,高瞻. 码片均衡多径干扰抵消联合接收机[J]. 东南大学学报(自然科学版),2004,34(5):565-569.

    WU Qihui,ZHAO Chunming,GAO Zhan. Combined chip equalization multi-path interference cancellation receiver[J]. Journal of Southeast University(Natural Science Edition),2004,34(5):565-569.
    [69] 陈育斌,李建东. 多径衰落信道中M进制直接序列扩频系统RAKE接收机性能分析[J]. 电子学报,1999,27(增刊1):72-75,60.

    CHEN Yubin,LI Jiandong. Performance of M-ary direct-sequence spread spectrum RAKE receiver in multipath fading channel[J]. ACTA Electronica Sinica,1999,27(S1):72-75,60.
    [70] WEI Yulin, CHOUDHURY R R. Angle-of-arrival(AOA) factorization in multipath channels[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, 2021: 7878-7882.
    [71] SEN S, LEE J, KIM K-H, et al. Avoiding multipath to revive inbuilding WiFi localization[C]. The 11th Annual International Conference on Mobile Systems, Applications, and Services, Taipei , 2013: 249-262.
    [72] WIELANDT S,STRYCKER L D. Indoor multipath assisted angle of arrival localization[J]. Sensors,2017,17(11):2522. doi: 10.3390/s17112522
    [73] WANG Yunlong,WU Ying,SHEN Yuan. Joint spatiotemporal multipath mitigation in large-scale array localization[J]. IEEE Transactions on Signal Processing,2018,67(3):783-797.
    [74] OJALA T,PIETIKAINEN M,MAENPAA T,et al. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis,2002,24(7):971-987. doi: 10.1109/TPAMI.2002.1017623
    [75] VAILAYA A, FIGUEIREDO M, JAIN A, et al. Content-based hierarchical classification of vacation images[C]. IEEE International Conference on Multimedia Computing and Systems, Florence, 1999: 518-523.
    [76] LIPSON P, GRIMSON E, SINHA P. Configuration based scene classification and image indexing[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1997: 1007-1013.
    [77] SMITH J R,LI C S. Image classification and querying using composite region templates[J]. Computer Vision,1999,75(1/2):165-174.
    [78] CARSON C, THOMAS M, BELONGIE S, et al. Blobworld: a system for region-based image indexing and retrieval[C]. International Conference on Advances in Visual Information Systems, Berlin, 1999: 509-517.
    [79] WANG J Z,LI Jia,WIEDERHOLD G,et al. SIMPLIcity:semantics-sensitive integrated matching for picture libraries[J]. IEEE Transactions on Pattern Analysis,2001,23(9):947-963. doi: 10.1109/34.955109
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  164
  • HTML全文浏览量:  26
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-10
  • 修回日期:  2022-09-04
  • 网络出版日期:  2022-09-22

目录

    /

    返回文章
    返回