留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矿山采动覆岩内部岩移原位监测技术进展及应用

朱卫兵 王晓振 谢建林 赵波智 宁杉 许家林

朱卫兵,王晓振,谢建林,等. 矿山采动覆岩内部岩移原位监测技术进展及应用[J]. 工矿自动化,2023,49(9):1-12.  doi: 10.13272/j.issn.1671-251x.18136
引用本文: 朱卫兵,王晓振,谢建林,等. 矿山采动覆岩内部岩移原位监测技术进展及应用[J]. 工矿自动化,2023,49(9):1-12.  doi: 10.13272/j.issn.1671-251x.18136
ZHU Weibing, WANG Xiaozhen, XIE Jianlin, et al. Advancements and applications: In-situ monitoring technology for overburden movement in mining[J]. Journal of Mine Automation,2023,49(9):1-12.  doi: 10.13272/j.issn.1671-251x.18136
Citation: ZHU Weibing, WANG Xiaozhen, XIE Jianlin, et al. Advancements and applications: In-situ monitoring technology for overburden movement in mining[J]. Journal of Mine Automation,2023,49(9):1-12.  doi: 10.13272/j.issn.1671-251x.18136

矿山采动覆岩内部岩移原位监测技术进展及应用

doi: 10.13272/j.issn.1671-251x.18136
基金项目: 国家自然科学基金资助项目(52074265,52274097)。
详细信息
    作者简介:

    朱卫兵(1978—),男,江苏南通人,教授,博士,主要研究方向为岩层移动与绿色开采,E-mail:zweibing@163.com

  • 中图分类号: TD325

Advancements and applications: In-situ monitoring technology for overburden movement in mining

  • 摘要: 覆岩内部岩移原位监测技术具备适应深井高承压水特厚煤层开采复杂地质条件、多层位动态监测、高精度远程实时在线传输等技术特点,可为矿山企业开展顶板灾害防控提供有效的数据支撑。从煤炭开采应用实践背景出发,系统回顾了采动覆岩内部岩移原位监测技术的发展历程、技术进展和应用效果。结合我国矿压理论及岩移监测技术发展历史,全面介绍了矿山采动覆岩内部岩移原位监测技术的重要阶段,阐述了该技术在多维实时协同监测、无人在线监测和深部岩移监测3个方面所取得的理论创新与技术突破。结合补连塔煤矿、同忻煤矿、高家堡煤矿等矿井监测工程实例,展示了采动覆岩内部岩移原位监测技术在实际工程应用中的有效性,并探讨了该技术在不同类型矿区、不同研究领域的应用前景。指出矿山采动覆岩内部岩移原位监测技术的发展趋势为精确化、智能化和集成化,即通过优化传感器性能和布置方案等提高监测精度和准确性,利用人工智能、大数据和物联网技术实现自动化分析和预测,将原位监测技术与其他技术相结合以形成完整的监测系统。

     

  • 图  1  覆岩内部岩移多维实时协同监测体系组成

    Figure  1.  Composition of the multidimensional real-time cooperative monitoring system for overburden movement in mining

    图  2  矿山采动覆岩内部岩移原位监测深度发展历程

    Figure  2.  Development history of in-situ monitoring depth of overburden movement in mining

    图  3  补连塔煤矿测点布置及岩移监测结果

    Figure  3.  The arrangement of measurement points and overburden movement monitoring results of Bulianta Coal Mine

    图  4  同忻煤矿测点布置及岩移监测结果

    Figure  4.  The arrangement of measurement points and overburden movement monitoring results of Tongxin Coal Mine

    图  5  高家堡煤矿测点布置及岩移监测结果

    Figure  5.  The arrangement of measurement points and overburden movement monitoring results of Gaojiabao Coal Mine

    图  6  测点位移抬升监测

    Figure  6.  Measurement point displacement lift monitoring

  • [1] 中国煤炭工业协会. 2022煤炭行业发展年度报告[R]. 北京:中国煤炭工业协会,2022.

    China National Coal Association. 2022 annual report on coal industry development[R]. Beijing:China National Coal Association,2022.
    [2] 罗文. 国能神东煤炭集团重大科技创新成果与实践[J]. 煤炭科学技术,2023,51(2):1-43.

    LUO Wen. Major scientific and technological innovation achievements and practices of CHN Shendong Coal Group[J]. Coal Science and Technology,2023,51(2):1-43.
    [3] 郭文兵,白二虎,赵高博. 高强度开采覆岩地表破坏及防控技术现状与进展[J]. 煤炭学报,2020,45(2):509-523.

    GUO Wenbing,BAI Erhu,ZHAO Gaobo. Current status and progress on overburden and surface damage and prevention technology of high-intensity mining[J]. Journal of China Coal Society,2020,45(2):509-523.
    [4] 何祥. 神东矿区高强度开采覆岩−地表联动破坏机理与减损研究[D]. 北京:中国矿业大学(北京),2021.

    HE Xiang. Reserch on coordinated failure mechanism of overburden-surface and damage reduction in Shendong mining area[D]. Beijing:China University of Mining and Technology-Beijing,2021.
    [5] 康红普,徐刚,王彪谋,等. 我国煤炭开采与岩层控制技术发展40 a及展望[J]. 采矿与岩层控制工程学报,2019,1(2):7-39.

    KANG Hongpu,XU Gang,WANG Biaomou,et al. Forty years development and prospects of underground coal mining and strata control technologies in China[J]. Journal of Mining and Strata Control Engineering,2019,1(2):7-39.
    [6] 鞠金峰,许家林,刘阳军,等. 关键层运动监测及岩移5阶段规律——以红庆河煤矿为例[J]. 煤炭学报,2022,47(2):611-622.

    JU Jinfeng,XU Jialin,LIU Yangjun,et al. Key strata movement monitoring during underground coal mining and its 5-stage movement law inversion:A case study in Hongqinghe Mine[J]. Journal of China Coal Society,2022,47(2):611-622.
    [7] 王家臣,许家林,杨胜利,等. 煤矿采场岩层运动与控制研究进展——纪念钱鸣高院士“砌体梁”理论40年[J]. 煤炭科学技术,2023,51(1):80-94.

    WANG Jiachen,XU Jialin,YANG Shengli,et al. Research progress on rock movement and control in coal mine - 40 years of "masonry beam" theory by Academician Qian Minggao[J]. Coal Science and Technology,2023,51(1):80-94.
    [8] 钱鸣高,许家林. 煤炭开采与岩层运动[J]. 煤炭学报,2019,44(4):973-984.

    QIAN Minggao,XU Jialin. Behaviors of strata movement in coal mining[J]. Journal of China Coal Society,2019,44(4):973-984.
    [9] 钱鸣高,许家林,王家臣. 再论煤炭的科学开采[J]. 煤炭学报,2018,43(1):1-13.

    QIAN Minggao,XU Jialin,WANG Jiachen. Further on the sustainable mining of coal[J]. Journal of China Coal Society,2018,43(1):1-13.
    [10] 程刚,王振雪,施斌,等. DFOS在矿山工程安全开采监测中的研究进展[J]. 煤炭学报,2022,47(8):2923-2949.

    CHENG Gang,WANG Zhenxue,SHI Bin,et al. Research progress of DFOS in safety mining monitoring of mines[J]. Journal of China Coal Society,2022,47(8):2923-2949.
    [11] 许家林,钱鸣高,朱卫兵. 覆岩主关键层对地表下沉动态的影响研究[J]. 岩石力学与工程学报,2005,24(5):787-791.

    XU Jialin,QIAN Minggao,ZHU Weibing.Study on influences of primary key stratum on surface dynamic subsidence[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(5):787-791.
    [12] KUANG T,LI Zhu,ZHU Weibing,et al. The impact of key strata movement on ground pressure behaviour in the Datong coalfield[J]. International Journal of Rock Mechanics and Mining Sciences,2019,119:193-204. doi: 10.1016/j.ijrmms.2019.04.010
    [13] 于斌,朱卫兵,李竹,等. 特厚煤层开采远场覆岩结构失稳机理[J]. 煤炭学报,2018,43(9):2398-2407.

    YU Bin,ZHU Weibing,LI Zhu,et al. Mechanism of the instability of strata structure in far field for super-thick coal seam mining[J]. Journal of China Coal Society,2018,43(9):2398-2407.
    [14] 朱卫兵,于斌,鞠金峰,等. 采场顶板关键层“横U−Y”型周期破断特征的试验研究[J]. 煤炭科学技术,2020,48(2):36-43.

    ZHU Weibing,YU Bin,JU Jinfeng,et al. Experimental study on "horizontal U-Y" periodical breakage characteristics of key strata in stope roof[J]. Coal Science and Technology,2020,48(2):36-43.
    [15] WANG Xiaozhen,ZHU Weibing,XIE Jialin,et al. Borehole-based monitoring of mining-induced movement in ultrathick-and-hard sandstone strata of the Luohe formation[J]. Minerals (Basel),2021,11(11).DOI: 10.3390/min11111157.
    [16] XU Jingmin,ZHU Weibing,XU Jialin,et al. High-intensity longwall mining-induced ground subsidence in Shendong coalfield,China[J]. International Journal of Rock Mechanics and Mining Sciences,2021,141. DOI: 10.1016/j.ijrmms.2021.104730.
    [17] 冯国瑞,朱卫兵,白锦文,等. 浅埋近距离煤层开采超前煤柱群冲击失稳机制[J]. 煤炭学报,2023,48(1):114-125.

    FENG Guorui,ZHU Weibing,BAI Jinwen,et al. Shocking failure mechanism of advanced coal pillars under the mining influence of shallow-buried closed distance coal seams[J]. Journal of China Coal Society,2023,48(1):114-125.
    [18] YU Dan,YI Xiaoyong,LIANG Zhimeng,et al. Research on strong ground pressure of multiple-seam caused by remnant room pillars undermining in shallow seams[J]. Energies (Basel),2021,14(17):1-15.
    [19] 胡国忠,李康,许家林,等. 覆岩采动裂隙空间形态反演方法及在瓦斯抽采中的应用[J]. 煤炭学报,2023,48(2):750-762.

    HU Guozhong,LI Kang,XU Jialin,et al. Spatial morphology inversion method of mining-induced fractures of overburden and its application in gas drainage[J]. Journal of China Coal Society,2023,48(2):750-762.
    [20] 娄金福. 采场覆岩破断与应力演化的梁拱二元结构及岩层特性影响机制[J]. 采矿与安全工程学报,2021,38(4):678-686.

    LOU Jinfu. Influence mechanism of beam-arch binary structure and strata characteristics on fracture and stress evolution of overlying strata in stope[J]. Journal of Mining and Safety Engineering,2021,38(4):678-686.
    [21] 许家林,秦伟,陈晓军,等. 采动覆岩卸荷膨胀累积效应的影响因素[J]. 煤炭学报,2022,47(1):115-127.

    XU Jialin,QIN Wei,CHEN Xiaojun,et al. Influencing factors of accumulative effect of overburden strata expansion induced by stress relief[J]. Journal of China Coal Society,2022,47(1):115-127.
    [22] 阳泉矿务局. 采煤工作面上部岩层活动的观测与研究[M]//中国煤炭学会. 矿压文集. 北京:煤炭工业出版社,1978.

    Yangquan Mining Bureau. Observation and study of rock activity above the mining face [M]//China Coal Society. Mine pressure anthology. Beijing:Coal Industry Press,1978.
    [23] 钱鸣高. 采场上覆岩层的平衡条件[J]. 中国矿业学院学报,1981,10(2):34-43.

    QIAN Minggao. Conditions required for equilibrium of overlying strata at working areas[J]. Journal of China Mining Academy,1981,10(2):34-43.
    [24] 钱鸣高. 采场上覆岩层岩体结构模型及其应用[J]. 中国矿业学院学报,1982,11(2):6-16.

    QIAN Minggao. A structural model of overlying strata in longwall workings and its application[J]. Journal of China Mining Academy,1982,11(2):6-16.
    [25] 钱鸣高,李鸿昌. 采场上覆岩层活动规律及其对矿山压力的影响[J]. 煤炭学报,1982,7(2):1-12.

    QIAN Minggao,LI Hongchang. The movement of overlying strata in longwall mining and its effect on ground pressure[J]. Journal of China Coal Society,1982,7(2):1-12.
    [26] 张平松,孙斌杨,许时昂,等. 煤系上覆地层移动变形钻孔多参数监测技术[J]. 煤炭学报,2022,47(8):2907-2922.

    ZHANG Pingsong,SUN Binyang,XU Shi'ang,et al. Multi parameter monitoring technology of borehole for movement and deformation of overlying strata of coal measures[J]. Journal of China Coal Society,2022,47(8):2907-2922.
    [27] 袁亮. 煤矿典型动力灾害风险判识及监控预警技术研究进展[J]. 煤炭学报,2020,45(5):1557-1566.

    YUAN Liang. Research progress on risk identification,assessment,monitoring and early warning technologies of typical dynamic hazards in coal mines[J]. Journal of China Coal Society,2020,45(5):1557-1566.
    [28] 袁强. 采动覆岩变形的分布式光纤检测与表征模拟试验研究[D]. 西安:西安科技大学,2017.

    YUAN Qiang. Experimental study on detection and representation of mining-induced overburden deformation with distributed optical fiber sensing[D]. Xi'an:Xi'an University of Science and Technology,2017.
    [29] 王润沛. 基于机器学习的分布式光纤监测覆岩变形矿压预测研究[D]. 西安:西安科技大学,2020.

    WANG Runpei. Study on the prediction of deformation and rock pressure of overburden monitored by distributed optical fiber based on machine learning[D]. Xi'an:Xi'an University of Science and Technology,2020.
    [30] 柴敬,刘永亮,袁强,等. 矿山围岩变形与破坏光纤感测理论技术及应用[J]. 煤炭科学技术,2021,49(1):208-217.

    CHAI Jing,LIU Yongliang,YUAN Qiang,et al. Theory-technology and application of optical fiber sensing on deformation and failure of mine surrounding rock[J]. Coal Science and Technology,2021,49(1):208-217.
    [31] 钱鸣高,缪协兴,何富连. 采场“砌体梁”结构的关键块分析[J]. 煤炭学报,1994,19(6):557-563.

    QIAN Minggao,MIAO Xiexing,HE Fulian. Analysis of key block in the structure of voussoir beam in longwall mining[J]. Journal of China Coal Society,1994,19(6):557-563.
    [32] 钱鸣高,缪协兴,许家林. 岩层控制中的关键层理论研究[J]. 煤炭学报,1996,21(3):2-7.

    QIAN Minggao,MIAO Xiexing,XU Jialin. Theoretical study of key stratum in ground control[J]. Journal of China Coal Society,1996,21(3):2-7.
    [33] 钱鸣高,许家林. 覆岩采动裂隙分布的“O”形圈特征研究[J]. 煤炭学报,1998,23(5):20-23.

    QIAN Minggao,XU Jialin. Study on the "O shape" circle distribution characteristics of mining induced fractures in the overlaying strata[J]. Journal of China Coal Society,1998,23(5):20-23.
    [34] 许家林,钱鸣高. 覆岩关键层位置的判别方法[J]. 中国矿业大学学报,2000,29(5):21-25.

    XU Jialin,QIAN Minggao. Method to distinguish key strata in overburden[J]. Journal of China University of Mining and Technology,2000,29(5):21-25.
    [35] 许家林. 煤矿绿色开采20年研究及进展[J]. 煤炭科学技术,2020,48(9):1-15.

    XU Jialin. Research and progress of coal mine green mining in 20 years[J]. Coal Science and Technology,2020,48(9):1-15.
    [36] 伊茂森. 神东矿区浅埋煤层关键层理论及其应用研究[D]. 徐州:中国矿业大学,2008.

    YI Maosen. Study and application of key strata theory in shallow seam of Shendong mining area[D]. Xuzhou:China University of Mining and Technology,2008.
    [37] 于斌,杨敬轩,刘长友,等. 大空间采场覆岩结构特征及其矿压作用机理[J]. 煤炭学报,2019,44(11):3295-3307.

    YU Bin,YANG Jingxuan,LIU Changyou,et al. Structural characteristics of overburden rock in large space quarries and its mechanism of mineral pressure action[J]. Journal of China Coal Society,2019,44(11):3295-3307.
    [38] 孙继平. 煤矿信息化与自动化发展趋势[J]. 工矿自动化,2015,41(4):1-5.

    SUN Jiping. Development trend of coal mine informatization and automation[J]. Industry and Mine Automation,2015,41(4):1-5.
    [39] 孙继平. 煤矿安全生产监控与通信技术[J]. 煤炭学报,2010,35(11):1925-1929.

    SUN Jiping. Technologies of monitoring and communication in the coal mine[J]. Journal of China Coal Society,2010,35(11):1925-1929.
    [40] 马晨阳. 高时空分辨率地表移动变形动态规律研究[D]. 徐州:中国矿业大学,2022.

    MA Chenyang. Study on dynamic law of surface movement and deformation with high temporal and spatial resolution[D]. Xuzhou:China University of Mining and Technology,2022.
    [41] 张永庭. 矿山地质灾害智能监测与评价[D]. 北京:中国地质大学(北京),2021.

    ZHANG Yongting.Research on intelligent monitoring and evaluation of mine geological disasters[D]. Beijing:China University of Geosciences,Beijing,2021.
    [42] 蓝航,陈东科,毛德兵. 我国煤矿深部开采现状及灾害防治分析[J]. 煤炭科学技术,2016,44(1):39-46.

    LAN Hang,CHEN Dongke,MAO Debing. Current status of deep mining and disaster prevention in China[J]. Coal Science and Technology,2016,44(1):39-46.
    [43] JASTRZEBSKA M. Modern displacement measuring systems used in geotechnical laboratories:advantages and disadvantages [J]. Sensors,2021,21(12).DOI: 10.3390/S21124139.
    [44] YANG Yang,TIAN Dezhong,CHEN KE,et al. A fiber-optic displacement sensor using the spectral demodulation method[J]. Journal of Lightwave Technology,2018,36(17):3666-3671. doi: 10.1109/JLT.2018.2841973
    [45] 赵国景,钱鸣高. 采场上覆坚硬岩层的变形运动与矿山压力[J]. 煤炭学报,1987,12(3):1-8.

    ZHAO Guojing,QIAN Minggao. Behaviour of overlying hard strata above workings and its effect on roof pressure[J]. Journal of China Coal Society,1987,12(3):1-8.
    [46] 王国法,刘峰,孟祥军,等. 煤矿智能化(初级阶段)研究与实践[J]. 煤炭科学技术,2019,47(8):1-36.

    WANG Guofa,LIU Feng,MENG Xiangjun,et al. Research and practice on intelligent coal mine construction(primary stage)[J]. Coal Science and Technology,2019,47(8):1-36.
    [47] 王国法,范京道,徐亚军,等. 煤炭智能化开采关键技术创新进展与展望[J]. 工矿自动化,2018,44(2):5-12.

    WANG Guofa,FAN Jingdao,XU Yajun,et al. Innovation progress and prospect on key technologies of intelligent coal mining[J]. Industry and Mine Automation,2018,44(2):5-12.
    [48] 丁震,李浩荡,张庆华. 煤矿灾害智能预警架构及关键技术研究[J]. 工矿自动化,2023,49(4):15-22.

    DING Zhen,LI Haodang,ZHANG Qinghua. Research on intelligent hazard early warning architecture and key technologies for coal mine[J]. Journal of Mine Automation,2023,49(4):15-22.
    [49] 李明建,赵旭生,谈国文,等. 区域煤矿瓦斯灾害风险预警数据采集技术研究[J]. 工矿自动化,2020,46(7):57-63.

    LI Mingjian,ZHAO Xusheng,TAN Guowen,et al. Research on gas disaster risk early warning data collection technology for regional coal mines[J]. Industry and Mine Automation,2020,46(7):57-63.
    [50] 宁小亮. 基于多源信息融合的煤与瓦斯突出动态预警模型[J]. 矿业安全与环保,2020,47(3):1-5,16.

    NING Xiaoliang. Dynamic early warning model of coal and gas outburst based on multi-source information fusion[J]. Mining Safety and Environmental Protection,2020,47(3):1-5,16.
    [51] 易欣,胡震,王伟峰,等. 煤自然发火智能监测与早期预警关键技术[J]. 煤矿安全,2022,53(9):31-37.

    YI Xin,HU Zhen,WANG Weifeng,et al. Key technologies for intelligent monitoring and early warning of coal spontaneous combustion[J]. Safety in Coal Mines,2022,53(9):31-37.
    [52] 靳德武. 我国煤矿水害防治技术新进展及其方法论思考[J]. 煤炭科学技术,2017,45(5):141-147.

    JIN Dewu. New development of water disaster prevention and control technology in China coal mine and consideration on methodology[J]. Coal Science and Technology,2017,45(5):141-147.
    [53] 谭云亮,张明,徐强,等. 坚硬顶板型冲击地压发生机理及监测预警研究[J]. 煤炭科学技术,2019,47(1):166-172.

    TAN Yunliang,ZHANG Ming,XU Qiang,et al. Study on occurrence mechanism and monitoring and early warning of rock burst caused by hard roof[J]. Coal Science and Technology,2019,47(1):166-172.
    [54] 莫金明,马威. 大采高综采工作面负压除尘微雾净化装置应用研究[J]. 煤炭学报,2023,48(3):1267-1279.

    MO Jinming,MA Wei. Negative-pressure dust removal and micro-mist purification device application in fully-mechanised mining faces with a large mining height[J]. Journal of China Coal Society,2023,48(3):1267-1279.
    [55] 陈炳瑞,冯夏庭,符启卿,等. 综合集成高精度智能微震监测技术及其在深部岩石工程中的应用[J]. 岩土力学,2020,41(7):2422-2431.

    CHEN Bingrui,FENG Xiating,FU Qiqing,et al. Integration and high precision intelligence microseismic monitoring technology and its application in deep rock engineering[J]. Rock and Soil Mechanics,2020,41(7):2422-2431.
    [56] 魏立科,姜德义,王翀,等. 煤矿冲击地压灾害风险监察智能分析系统关键技术架构[J]. 煤炭学报,2021,46(增刊1):63-73.

    WEI Like,JIANG Deyi,WANG Chong,et al. Key technological architecture of the intelligent monitoring-analysis system for coal mine rockburst risk supervision[J]. Journal of China Coal Society,2021,46(S1):63-73.
    [57] 康红普,王国法,姜鹏飞,等. 煤矿千米深井围岩控制及智能开采技术构想[J]. 煤炭学报,2018,43(7):1789-1800.

    KANG Hongpu,WANG Guofa,JIANG Pengfei,et al. Conception for strata control and intelligent mining technology in deep coal mines with depth more than 1 000 m[J]. Journal of China Coal Society,2018,43(7):1789-1800.
    [58] MITRA S,KUMAR D,CHAULYA S K,et al. Prediction of strata monitoring system in underground coal mines using IoT[J]. Journal of the Geological Society of India,2022,98(2):232-236. doi: 10.1007/s12594-022-1963-8
    [59] HAO Yang,WU Yu,RANJITH P G,et al. New insights on ground control in intelligent mining with Internet of things[J]. Computer Communications,2020,150:788-798. doi: 10.1016/j.comcom.2019.12.032
    [60] 钱鸣高,缪协兴,许家林,等. 论科学采矿[J]. 采矿与安全工程学报,2008(1):1-10.

    QIAN Minggao,MIAO Xiexing,XU Jialin,et al. On scientized mining[J]. Journal of Mining and Safety Engineering,2008(1):1-10.
    [61] QU Q,GUO H,YUAN L,et al. Rock mass and pore fluid response in deep mining:a field monitoring study at inclined longwalls[J]. Minerals,2022,12(4). DOI: 10.3390/min12040463.
    [62] QU Qingdong,GUO Hua,KHANAL M. Monitoring and analysis of ground movement from multi-seam mining[J]. International Journal of Rock Mechanics and Mining Sciences,2021,148. DOI: 10.1016/j.ijrmms.2021.104949.
    [63] 许家林,朱卫兵,王晓振. 基于关键层位置的导水裂隙带高度预计方法[J]. 煤炭学报,2012,37(5):762-769.

    XU Jialin,ZHU Weibing,WANG Xiaozhen. New method to predict the height of fractured water-conducting zone by location of key strata[J]. Journal of China Coal Society,2012,37(5):762-769.
    [64] 钱鸣高,缪协兴,许家林. 资源与环境协调(绿色)开采[J]. 煤炭学报,2007,32(1):1-7.

    QIAN Minggao,MIAO Xiexing,XU Jialin. Green mining of coal resources harmonizing with environment[J]. Journal of China Coal Society,2007,32(1):1-7.
  • 加载中
图(6)
计量
  • 文章访问数:  1668
  • HTML全文浏览量:  37
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-18
  • 修回日期:  2023-09-01
  • 网络出版日期:  2023-09-28

目录

    /

    返回文章
    返回