浅埋双硬特厚煤层放煤规律分析及参数研究

孙强1, 单成方2, 李亚锋2, 王坚坚2, 张昊1, 张加齐1, 武中亚1

(1.中国矿业大学 矿业工程学院, 江苏 徐州 221116; 2.库车县榆树岭煤矿有限责任公司, 新疆 阿克苏 843300)

摘要新疆地区煤炭资源埋藏较浅、煤层较厚、煤层与顶板坚硬而导致顶煤冒放性较差,无法实现安全高效放顶煤开采,并且目前针对浅埋双硬特厚煤层综放工作面高效放煤的相关研究较少。针对上述问题,以榆树岭煤矿110501综放工作面为工程背景,对浅埋双硬特厚煤层放煤规律进行研究,从而确定合理的采放比及放煤工艺,提高采出率。采用FLAC3D软件分析了综放工作面回采过程中煤岩破坏规律,以设计合理采放比。结果如下:① 随着工作面采高不断增大,顶煤及煤帮的屈服破坏系数不断增大,且工作面煤帮超前支承应力峰值和影响区域逐渐增大。② 综合考虑顶煤、煤帮的稳定性和冒放性,设计采高为4.0 m,放顶煤高度为4.6 m,采放比为1∶1.15。利用PFC2D软件分析了综放工作面顶煤冒放规律,以设计合理放煤工艺(包括放煤步距和放煤方式)。结果如下:① “一采一放”含矸率比“两采一放”“三采一放”高,但由于放煤步距较小,整体放出率高于“两采一放”“三采一放”,因此选用“一采一放”的放煤步距。② 单轮放煤相比于2轮放煤,放煤速度高,但含矸率较大,放出率较小;2轮间隔放煤与2轮顺序放煤相比,放出率较高,因此选择2轮间隔放煤方式。将设计的采放比和放煤工艺应用于110501综放工作面工程实践,结果表明:该工作面顶煤放出率为82%~87%,平均放出率大于82%,放煤效果较好。

关键词放顶煤开采; 浅埋双硬特厚煤层; 顶煤冒放; 采放比; 放煤步距; 放煤工艺; 2轮间隔放煤; “一采一放”

0 引言

随着国家经济快速发展,新疆地区煤炭在国家能源战略中日益重要,2020年新疆地区煤炭产量为2.5亿t。新疆地区煤炭资源普遍存在埋藏较浅、煤层较厚、煤质普遍较硬的特点,煤层冒放性受到影响,所以放顶煤的高效开采急需实现[1-5]

针对综放工作面顶煤冒放理论和放煤工艺,相关学者做了大量研究。刘闯等[6]研究放煤率、采出率与放煤数量的关系,对比分析了不同放煤口数量下的放煤规律,得出放煤率和采出率都随着放煤口数量的增加而增加。朱帝杰等[7]分析综放过程中放出体的变化过程,指出传统椭球体理论有一定局限,得出加大放出体高度会使其改变椭球状的类型和偏转,从而改变放煤效果。王家臣等[8]分析了顶煤和顶板岩石的分界面特点和冒放规律,得出采用分段逆序双口同时放煤,能达到同时提高工作面中部和下端头顶煤采出率的目的。孙利辉等[9]对比放煤条件对采出率等参数的影响,得出放煤条件不同会导致顶煤滞留现象不同。王家臣等[10]针对放顶煤工作面提出了分段大间隔放煤工艺,该放煤工艺可增加顶煤采出率。曹卫军[11]针对工作面顶煤放落困难、放出率不高等问题,提出了增加采出率的策略,指出应采用2轮间隔放煤和“一采一放”的放煤工艺。刘振兴[12]研究不同综放工艺参数下的煤壁稳定性,发现煤壁稳定性随着采煤高度和放煤步距的增大而减弱。针对放煤规律和放煤工艺的研究已经较为丰富,但对浅埋双硬特厚煤层综放工作面高效放煤的相关研究较少。

因此,本文以新疆库车县榆树岭煤矿110501综放工作面为工程背景,对浅埋双硬特厚煤层放煤规律进行研究,从提高煤炭资源采出率的角度出发,确定合理的采放比及放煤工艺,提高采出率,增加经济效益。研究成果以期丰富放顶煤研究理论,为浅埋双硬特厚煤层安全高效开采提供参考。

1 采矿地质条件

1.1 矿井基本概况

榆树岭煤矿核定产能为120万 t/a,可采储量为607 769万t,设计服务年限为39 a,井田面积9.352 8 km2,矿井地质构造简单。可采煤层(组)由上而下共有5组,依次为下5,下7,下8,下10,下12煤层,煤层平均倾角为10°,煤种主要为45号气煤。目前正在开采下5煤层,可采厚度为7.99~10.03 m,平均可采厚度为9.32 m,煤层赋存较稳定,下5煤层属于浅埋双硬特厚煤层。

1.2 工作面顶底板情况

地面标高为1 793~1 834 m,工作面标高为1 653~1 688 m,工作面长度为155 m,可推进长度为1 284 m。110501工作面不存在伪顶,基本顶为厚硬的粉砂岩,煤层坚固性系数为3.8。110501工作面顶底板特征见表1。

表1 110501工作面顶底板特征
Table 1 Roof and floor characteristics of 110501 working face

顶底板岩性厚度/m岩性特征基本顶粉砂岩8~14主要为灰白色粉砂岩,含细砂岩、中砂岩和粗砾砂岩等直接顶粉砂岩0~4.83以粉砂岩为主,含细砂岩和粗砂岩直接底细砂岩1.41~11.78主要为细砂岩,含泥质粉砂岩

2 浅埋双硬特厚煤层综放工作面合理采放比设计

确定合理的综放开采采放比对资源采出率有着重要影响。采用FLAC3D软件分析综放工作面回采过程中煤岩破坏规律[13-15],设计合理采放比。

2.1 数值模型建立

以工作面推进方向不同采高顶煤的冒放性及煤帮片帮破坏特征为主要研究内容,建立尺寸为200 m×50 m×120 m(长×宽×高)的模型,各煤岩层模拟参数见表2。模型四周固定水平位移,底面固定水平位移及垂直位移,整体施加重力加速度(g=9.8 m/s2),模型内各单元均考虑自重作用。运算过程中工作面采高分别为2.5,3.0,3.5,4.0,4.5,5.0 m,即采放比分别为1∶2.44,1∶1.87,1∶1.46,1∶1.15,1∶0.91,1∶0.72。

2.2 采放比设计

采用FLAC3D完成运算后,将模拟结果沿工作面走向中部作剖面,得出不同采高条件下综放工作面塑性区及垂直应力分布,分别如图1和图2所示。

表2 煤岩层模拟参数
Table 2 Coal strata simulation parameters

序号岩性厚度/m密度/(kg·m-3)体积模量/MPa剪切模量/MPa抗拉强度/MPa内摩擦角/(°)1粗砂岩34.082 4902 6791 7641.4943.152砂砾岩1.802 5402 8861 9011.7239.603细砂岩7.402 6302 6431 8201.4640.234粗砂岩11.682 4902 6791 7641.4943.155砂砾岩1.702 5402 8861 9011.7239.606煤层0.601 3502 1391 2040.7848.237细砂岩13.802 6302 6431 8201.4640.238粉砂岩19.172 6603 5502 3451.3839.609细砂岩2.282 6302 6431 8201.4640.2310煤层0.801 3502 1391 2040.7848.2311粉砂岩14.062 6603 5502 3451.3839.6012粉砂岩5.002 6603 5502 3451.3839.6013下5煤层8.601 3502 1391 2040.7848.2314细砂岩7.992 6302 6431 8201.4640.2315砂砾岩1.502 5402 8861 9011.7239.6016细砂岩17.702 6302 6431 8201.4640.23

由图1可知,随着煤层采高增加,综放工作面顶煤塑性破坏深度为3.8~20 m,煤帮塑性破坏深度为2~5 m。采高增大会导致冒放性逐渐增大,顶煤会产生大面积的拉剪破坏,采高为4.5,5.0 m时破坏面积较大。

由图2可知,随着煤层采高增大,煤帮超前支承应力峰值不断增大,煤帮超前支承应力影响范围不断扩大,整体矿压显现特征趋于强烈,采高为4.5,5.0 m时矿压显现强烈。

选取顶煤屈服破坏系数、煤帮屈服破坏系数来表征顶煤冒放性及综放工作面煤帮破坏程度。

(1)

(2)

式中:Fd为顶煤屈服破坏系数;sm为采场控顶区内顶煤塑性区面积;s为控顶区总面积;Fb为煤帮屈服破坏系数;sn为采场控顶区内煤帮塑性区面积。

图1 不同采高下综放工作面塑性区分布
Fig.1 Plastic zone distribution of fully mechanized working surface under different mining heights

图2 不同采高下综放工作面垂直应力分布
Fig.2 Vertical stress distribution of fully mechanized working face under different mining heights

根据工作面采高2.5~5.0 m的数值模拟结果,进一步分析得到综放工作面顶煤屈服破坏系数与煤帮屈服破坏系数随采高变化曲线(图3)和综放工作面超前支承应力峰值及影响区域与采高的关系(图4)。

(a) 顶煤屈服破坏系数

(b) 煤帮屈服破坏系数

图3 顶煤屈服破坏系数及煤帮屈服破坏系数与采高关系曲线
Fig.3 Relation curve between yield failure coefficient of top coal and coal wall and mining height

由图3可知,随着煤层采高增大,顶煤及煤帮屈服破坏系数增大。采高从2.5 m增加至5.0 m过程中,顶煤及煤帮屈服破坏系数变化范围分别为0.32~0.97与0.38~0.94。顶煤及煤帮屈服破坏系数分别为

Fd=0.895ln(h/m)-0.543 3

(3)

Fb=0.886ln(h/m)-0.444

(4)

式中h为采高。

(a) 超前支承应力峰值

(b) 超前支承应力影响区域

图4 超前支承应力峰值及影响区域与 采高关系曲线
Fig.4 Relation curve between peak value of advanced support stress and its affected area and mining height

由图4可知,随着煤层采高增大,煤体超前支承应力及其影响区域逐渐增大。采高为2.5~5.0 m时,工作面煤体超前支承应力峰值及其影响区域分别为5.4~10.9 MPa,6.8~15.9 m。煤体超前支承应力峰值及超前支承应力影响区域分别为

σ=6.933ln(h/m)-0.236 26

(5)

S=6.61ln(h/m)+7.486

(6)

式中:σ为煤体超前支承应力峰值;S为超前支承应力影响区域。

根据以上数值模拟分析结果,利用正交试验和多因素分析的综合研究手段[16],可得综放工作面煤层合理采高的计算公式。

(7)

M-26.603+9.35ln(h/m+1.66)≤0

(8)

式中M为煤层厚度。

M=8.6 m代入式(7)和式(8),得煤层厚度与采高的关系曲线,如图5所示。A点和B点对应的横坐标为采用综放开采对采高上下限的要求,分别为3.15,5.25 m。当采高小于3.15 m时,顶煤难以充分垮落,采出率较低;当采高大于5.25 m时,煤壁稳定性控制较困难。因此,3.15~5.25 m属于合理采高范围。

图5 煤层厚度与采高关系曲线
Fig.5 Relation curve between coal seam thickness and cutting height

综上可知,为了保证顶煤冒放性及采场围岩稳定性,设计的最优采高为4.0 m,即采放比为1∶1.15。

3 浅埋双硬特厚煤层综放工作面冒放规律分析与放煤工艺设计

为提高综放开采的资源采出率,除采放比外,还需对放煤工艺进行合理设计,包括放煤步距和放煤方式的设计。利用PFC2D软件对110501综放工作面顶煤冒放规律进行分析,为放煤工艺设计提供依据[17-19]

3.1 数值模型的建立

根据110501综放工作面钻孔柱状图、煤层及顶底板物理力学特性建立模型,模型中设定的煤岩层基本参数见表3。PFC2D软件中设定的岩体力学参数见表4。

表3 煤岩层基本参数
Table 3 Basic parameters of coal strata

层位粒径范围/m厚度/m孔隙率直接顶0.5~0.850.05煤层0.3~0.58.60.05

采场空间使用墙单元进行模拟,并添加围压约束,将“活动侧”定为颗粒触及的一面,用有限点连接各个墙,设定墙体初始速度为0,加速度为0,并给模型施加地应力。使用墙命令建立放顶煤液压支架,通过删去放煤口和后部刮板输送机位置的墙,实现放煤命令,通过删去或输入放煤处支架的墙命令,实现移架[20]

表4 岩体力学参数
Table 4 Mechanical parameters of rock mass

层位容重/(kN·m-3)法向刚度/(N·m-1)切向刚度/(N·m-1)黏聚力/N摩擦因数岩层2.504.0×1084.0×10800.4煤层1.292.0×1082.0×10800.4

用PFC2D产生的颗粒模拟采场内的煤和岩石,颗粒在一定范围内根据初始设置的参数随机产生。

(1) 放煤步距。按1∶1建立二维模型,模型尺寸为40 m×8.6 m(长×宽),将颗粒赋上参数,在规定空间依据高斯随机分布产生规定半径的颗粒,使用重力压实法令颗粒密实。模拟初始条件:顶煤颗粒初始速度为0,直接顶颗粒初始速度为0,颗粒只受重力作用。边界条件:PFC中墙单元构成所有边界,速度为0,加速度为0。

在左右两侧留出10 m,以降低模型边界效应的影响,用墙单元模拟液压支架,安设支架后,删去采高位置的颗粒,顶煤、上覆岩层颗粒在自重影响下掉落,达到初始平衡状态。接着开启放煤口放煤,直至有放煤初始边界产生。

在模型中部16 m的区域放煤循环,“一采一放”“两采一放”及“三采一放”条件下分别设置20,10,7个放煤循环。首先在初始模型上移架,步距分别为0.8,1.6,2.4 m,此时顶煤和上覆岩层在自重影响下掉落达到稳定,开启放煤口开始放煤。按照停止放煤原则,见矸后重新进行放煤。

(2) 放煤方式。以工作面倾向方向建立二维模型,模型尺寸为40 m×9.6 m(长×宽),用产生的球颗粒模拟采场内的煤与岩石,用墙单元模拟边界和放煤口。在4 m采高条件下,将连续6组支架归成1组,按照以下3个放煤方案进行模拟,比较放煤效果差异。① 单轮顺序放煤:按1号、2号……放煤口顺序放煤,见矸后停止。② 2轮顺序放煤:首先按1号、2号……放煤口顺序放煤,第1轮放一半,然后再按1号、2号……放煤口顺序放煤,第2轮放完所有煤。③ 2轮间隔放煤:首先放出1号、3号……单号支架上的煤,见矸后停止,再放出2号、4号……双号支架上的煤。分2轮进行,第1轮放一半,第2轮放完所有煤。

3.2 放煤步距模拟分析

根据模拟结果,为使放煤步距差异对顶煤运移规律的影响更直观,从模拟结果中选典型的来说明(第1,6,12,18次放煤结果),如图6—图8所示。由图6—图8可知,煤矸分界线存在显著改变(红色颗粒为煤,粉色颗粒为矸石)。由于支架上方顶煤堆积增多,矸石被放煤口附近的煤挤向后面的采空区,使煤矸分界线斜率变小,几次循环后,会使某个循环放煤量增加。顶煤被大量放出后,采空区顶煤并未显著丢失,煤矸分界线变回初始状态。

图6 “一采一放”
Fig.6 One coal mining and one top coal drawing

图7 “两采一放”
Fig.7 Two coal mining and one top coal drawing

图8 “三采一放”
Fig.8 Three coal mining and one top coal drawing

3种不同放煤步距的放煤结果见表5。可看出“一采一放”含矸率比“两采一放”“三采一放”高,这是由于顶煤还未放完,但采空区后面的矸石已至放煤口;由于放煤步距较小,“一采一放”整体放出率高于“两采一放”“三采一放”。虽然“一采一放”的含矸率高,但是影响很小,从提高煤炭资源采出率的角度出发,选用“一采一放”。

表5 不同放煤步距下放煤统计
Table 5 Coal drawing statistics under different coal drawing step distances

放煤步距/m顶煤总量/kg顶煤放出量/kg矸石混入量/kg放出率/%含矸率/%0.81.62.464964964955225853.852013802.05008771.2

3.3 放煤方式模拟分析

在初始模型的基础上进行模拟,根据不同放煤方式开启或关闭1号—6号放煤口,模拟结果如图9—图13所示。可看出煤矸分界线变化明显,形成1个显著的放出漏斗。颗粒所处位置不同,其下移速度也不同,导致不同放煤方式下,总会有矸石混入。放出漏斗的底部半径随着放煤量不断增加,直至增加到设计6个放煤口宽度,采空区并没有出现明显的脊背煤遗失情况,说明此时顶煤放出率较高。

图9 单轮顺序放煤
Fig.9 Single round sequential coal drawing

图10 2轮顺序放煤(第1轮)
Fig.10 Two rounds sequential coal drawing (the first round)

图11 2轮顺序放煤(第2轮)
Fig.11 Two rounds sequential coal drawing (the second round)

图12 2轮间隔放煤(第1轮)
Fig.12 Two rounds interval coal drawing (the first round)

图13 2轮间隔放煤(第2轮)
Fig.13 Two rounds interval coal drawing (the second round)

3种不同放煤方式的放煤结果见表6。可看出单轮放煤相比于2轮放煤,含矸率较大,放出率较小。2轮间隔放煤与2轮顺序放煤相比,放出率较高。从提高煤炭资源采出率。保证循环作业时间充分的角度,应选择放出率高、含矸率低,2轮间隔放煤方式。

表6 不同放煤方式下放煤统计
Table 6 Coal drawing statistics under different coal drawing process

放煤方式顶煤总量/kg顶煤放出量/kg矸石混入量/kg放出率/%含矸率/%单轮顺序2轮顺序2轮间隔5435435434125375.89.74341678.13.04241580.03.0

4 工程应用效果分析

将采放比为1∶1.15,“一采一放”2轮间隔放煤工艺应用于110501综放工作面,从2020年4月29日—2021年3月5日共回采了850 m,累计采煤量为117.66万t,最高日采煤量为5 858.21 t。综放工作面顶煤放出率为82%~87%,平均放出率大于82%,放煤效果较好。

5 结论

(1) 随着工作面采高不断增大,顶煤及煤帮的屈服破坏系数不断增大,且工作面煤体超前支承应力峰值和影响区域逐渐增大。综合考虑顶煤、煤帮的稳定性和冒放性,设计采高为4.0 m,放顶煤高度为4.6 m,采放比为1∶1.15。

(2) “一采一放”含矸率比“两采一放”“三采一放”高,但“一采一放”的整体放出率高于“两采一放”“三采一放”。从提高煤炭资源采出率的角度出发,选用“一采一放”的放煤步距。单轮放煤相比于2轮放煤,尽管放煤速度较快,但是含矸率较大,放出率较小;2轮间隔放煤与2轮顺序放煤相比,放出率较高。从提高煤炭资源采出率、保证循环作业时间充分的角度,选用2轮间隔放煤工艺。

(3) 110501综放工作面实测顶煤平均放出率大于82%,冒放效果较好。

参考文献(References):

[1] 杨俊哲.浅埋坚硬厚煤层预采顶分层综放技术研究[J].煤炭学报,2017,42(5):1108-1116.

YANG Junzhe.Research on fully mechanized caving mining technology of pre mining top slicing in shallow hard coal seam[J].Journal of China Coal Society,2017,42(5):1108-1116.

[2] 庞义辉,王国法.坚硬特厚煤层顶煤冒放结构及提高采出率技术[J].煤炭学报,2017,42(4):817-824.

PANG Yihui,WANG Guofa.Top-coal caving structure and technology for increasing recovery rate at extra-thick hard coal seam[J].Journal of China Coal Society,2017,42(4):817-824.

[3] 韩哲,赵铁林,解兴智.提高浅埋坚硬特厚煤层顶煤冒放性技术研究[J].煤矿开采,2016,21(1):18-20.

HAN Zhe,ZHAO Tielin,XIE Xingzhi.Technology of improving top coal caving property in hard thick coal seam with shallow mining depth[J].Coal Mining Technology,2016,21(1):18-20.

[4] 许永祥,王国法,张传昌,等.特厚坚硬煤层超大采高综放开采合理采高研究与实践[J].采矿与安全工程学报,2020,37(4):715-722.

XU Yongxiang,WANG Guofa,ZHANG Chuanchang,et al. lnvestigation and practice of the reasonable cutting height at longwall top coal caving face with super-large mining height in hard and extra-thick coal seams[J].Journal of Mining & Safety Engineering,2020,37(4):715-722.

[5] 解兴智,赵铁林.浅埋坚硬特厚煤层综放开采顶煤冒放结构分析[J].煤炭学报,2016,41(2):359-366.

XIE Xingzhi,ZHAO Tielin.Analysis on the top-coal caving structure of extra-thick hard coalseam with shallow depth in fully mechanized sublevel caving mining[J].Journal of China Coal Society,2016,41(2):359-366.

[6] 刘闯,李化敏,周英,等.综放工作面多放煤口协同放煤方法[J].煤炭学报,2019,44(9):2632-2640.

LIU Chuang,LI Huamin,ZHOU Ying,et al.Method of synergetic multi-windows caving in longwall top coal caving working face[J].Journal of China Coal Society,2019,44(9):2632-2640.

[7] 朱帝杰,陈忠辉,常远,等.基于随机介质理论的综放开采顶煤放出规律研究[J].煤炭科学技术,2018,46(1):167-174.

ZHU Dijie,CHEN Zhonghui,CHANG Yuan,et al.Study on top coal caving law of fully-mechanized top coal caving mining based on random medium theory[J].Coal Science and Technology,2018,46(1):167-174.

[8] 王家臣,张锦旺,陈祎.基于BBR体系的提高综放开采顶煤采出率工艺研究[J].矿业科学学报,2016,1(1):38-48.

WANG Jiachen,ZHANG Jinwang,CHEN Yi.Research on technology of improving top-coal recovery in longwall top-coal caving mining based on BBR system[J].Journal of Mining Science and Technology,2016,1(1):38-48.

[9] 孙利辉,纪洪广,蔡振禹,等.大倾角厚煤层综放工作面放煤工艺及顶煤运动特征试验[J].采矿与安全工程学报,2016,33(2):208-213.

SUN Lihui,JI Hongguang,CAI Zhenyu,et al.Top-coal caving process and movement characters of fully mechanized caving face in steeply dipping thick seam[J].Journal of Mining & Safety Engineering,2016, 33(2):208-213.

[10] 王家臣,陈祎,张锦旺.基于BBR的特厚煤层综放开采放煤方式优化研究[J].煤炭工程,2016,48(2):1-4.

WANG Jiachen,CHEN Yi,ZHANG Jinwang.Optimization study on drawing technique of longwall top-coal caving in extra-thick coal seam based on BBR system[J].Coal Engineering,2016,48(2):1-4.

[11] 曹卫军.特厚硬煤层优化采放工艺参数研究[J].能源技术与管理,2020,45(1):70-72.

CAO Weijun.Study on optimal mining and caving process parameters of extra thick hard coal seam[J].Energy Technology and Management,2020,45(1):70-72.

[12] 刘振兴.矿井综放工作面关键参数模拟确定分析[J].山西化工,2018,38(4):163-166.

LIU Zhenxing.Simulation and determination of key parameters of fully-mechanized caving face in coal mine[J].Shanxi Chemical Industry,2018,38(4):163-166.

[13] 王家臣.我国放顶煤开采的工程实践与理论进展[J].煤炭学报,2018,43(1):43-51.

WANG Jiachen.Engineering practice and theoretical progress of top-coal caving mining technology in China[J].Journal of China Coal Society,2018,43(1):43-51.

[14] 王家臣,魏立科,张锦旺,等.综放开采顶煤放出规律三维数值模拟[J].煤炭学报,2013,38(11):1905-1911.

WANG Jiachen,WEI Like,ZHANG Jinwang,et al.3D numerical simulation on the top-coal movement law under caving mining technique[J].Journal of China Coal Society,2013,38(11):1905-1911.

[15] 刘全,涂敏,付宝杰.综放工作面采放比对顶煤采出率影响规律研究[J].煤炭科学技术,2013,41(3):55-58.

LIU Quan,TU Min,FU Baojie.Study on mining and caving ratio of fully mechanized top coal caving mining face affected to top coal recovery rate[J].Coal Science and Technology,2013,41(3):55-58.

[16] 孙臣良,张峰.基于FLAC3D的厚煤层合理采放比的确定方法研究[J].计算机应用与软件,2013,30(1):203-205.

SUN Chenliang,ZHANG Feng.Research on determination method of reasonable mining and caving ratio for thick coal seam based on FLAC3D[J].Computer Applications and Software,2013,30(1):203-205.

[17] 胡燏.基于PFC2D的综放工作面放煤步距研究[J].中国煤炭,2017,43(3):70-73.

HU Yu.Research on coal caving step distance at fully mechanized caving face based on PFC2D[J].China Coal,2017,43(3):70-73.

[18] 夏洪春,于斌,李伟.大同矿区特厚中硬煤层综放顶煤运移规律研究[J].煤炭技术,2017,36(3):35-38.

XIA Hongchun,YU Bin,LI Wei.Top coal movement of thick coal seam in fully mechanized top coal caving in Datong Mine[J].Coal Technology,2017,36(3):35-38.

[19] 武晓敏.综放工作面顶煤运移及煤矸界面演化规律研究[J].中国煤炭,2015,41(2):63-66.

WU Xiaomin.Research on the law of top coal movement and coal-gangue interface evolution in fully mechanized caving face[J].China Coal,2015,41(2):63-66.

[20] 许力峰,张勇,李立,等.特厚煤层综放开采顶煤放出率影响因素分析[J].煤矿开采,2012,17(6):25-28.

XU Lifeng,ZHANG Yong,LI Li,et al.Influence factors of top-coal caving ratio in full-mechanized caving mining extremely-thick coal-seam[J].Coal Mining Technology,2012,17(6):25-28.

Analysis of coal drawing law and parameter research in shallow buried double hard and extra-thick coal seam

SUN Qiang1, SHAN Chengfang2, LI Yafeng2, WANG Jianjian2, ZHANG Hao1, ZHANG Jiaqi1, WU Zhongya1

(1.School of Mines, China University of Mining and Technology, Xuzhou 221116, China; 2.Kuqa Yushuling Coal Mine Co., Ltd., Aksu 843300, China)

AbstractThe coal resources in Xinjiang are shallowly buried, the coal seam is thick, resulting in poor top coal caving and drawing. And the roof is overhanging in a large area, which makes it impossible to achieve safe and efficient top coal mining. And at present, there are few related researches on efficient coal drawing in fully mechanized working face of shallow buried double hard and extra thick coal seam. In order to solve the above problems, taking 110501 fully mechanized working face of Yushuling Coal Mine as engineering background, the paper studies the coal drawing law of shallow buried double hard and extra thick coal seam, so as to determine reasonable mining-drawing rate and coal drawing technology, and improve the recovery rate. FLAC3D software is used to analyze the coal and rock failure law in the mining process of fully mechanized working face, so as to design reasonable mining-drawing ratio. The results are listed as follows. ① With the increase of the mining height of the working face, the yield failure coefficient of the top coal and the coal wall continues to increase, and the maximum value of the advance support stress and the affected area of the coal wall on the working face gradually increase. ② Considering the stability and caving and drawing of top coal and coal wall, the designed mining height is 4.0 m, the top coal drawing height is 4.6 m, and the mining-drawing ratio is 1∶1.15. The top coal drawing law of fully mechanized working face is analyzed by using PFC2D software, so as to design reasonable coal drawing technology (including the design of coal drawing step distance and coal drawing mode). The results are listed as follows. ① The gangue content of 'one coal mining and one top coal drawing' is higher than that of 'two coal mining and one top coal drawing' and 'three coal mining and one top coal drawing', but the overall drawing rate is higher than that of 'two coal mining and one top coal drawing' and 'three coal mining and one top coal drawing' due to the small coal drawing step distance. Therefore, the coal drawing step distance of 'one coal mining and one top drawing' is selected. ② Compared with two rounds coal drawing, single round coal drawing has higher coal drawing speed, but gangue content is higher and coal drawing rate is lower. Compared with two rounds sequential coal drawing, the two rounds interval coal drawing has a higher drawing rate. Therefore, the tow rounds interval coal drawing method is selected. The designed mining drawing rate and coal drawing process are applied to the engineering practice of 110501 fully mechanized working face, the results show that the top coal drawing rate of this working face is 82%-87%, the average drawing rate is higher than 82%, and the coal drawing effect is good.

Key words:top coal caving mining; shallow buried double hard and extra thick coal seam; top coal caving and drawing; mining drawing rate; coal drawing step distance; coal drawing process; two rounds interval coal drawing; 'one coal mining and one top coal drawing'

文章编号1671-251X(2022)02-0061-09

DOI:10.13272/j.issn.1671-251x.2021070054

中图分类号:TD853.34

文献标志码:A

收稿日期:2021-07-19;修回日期:2022-02-06;责任编辑:王晖,郑海霞。

基金项目:国家自然科学基金青年基金项目(52104152)。

作者简介:孙强(1988-),男,山东临沂人,讲师,博士,研究方向为采动岩层控制及矿井水资源保护等方面的研究工作,E-mail:kkysun@126.com。

引用格式:孙强,单成方,李亚锋,等.浅埋双硬特厚煤层放煤规律分析及参数研究[J].工矿自动化,2022,48(2):61-69.

SUN Qiang,SHAN Chengfang,LI Yafeng,et al.Analysis of coal drawing law and parameter research in shallow buried double hard and extra-thick coal seam[J].Industry and Mine Automation,2022,48(2):61-69.

扫码移动阅读