综采工作面上覆岩层位移特征相似模拟

徐小奔1,2,胡祖祥1,2,邢立奋3,郝学1,2

(1.安徽理工大学 煤矿安全高效开采省部共建教育部重点实验室, 安徽 淮南 232001;2.安徽理工大学 能源与安全学院, 安徽 淮南 232001;3.山西平遥县兴盛煤化有限责任公司, 山西 平遥 031100)

摘要以淮南矿业集团谢桥矿1232(1)综采工作面为工程背景,采用相似模拟实验方法,研究了煤层开采过程中上覆岩层位移特征。结果表明:① 随着综采工作面不断推进,垮落角基本保持不变,垮落带和断裂带高度逐渐增大,上覆岩层受采动影响不断增大。② 上覆岩层垂直位移峰值基本位于采空区中部,向两端逐渐减小,上覆岩层垂直位移曲线基本上呈对称分布;随着综采工作面推进距离增大,垂直位移峰值不断增大;随着距煤层距离的增大,上覆岩层垂直位移不断减小。

关键词煤炭开采; 综采工作面; 巷道支护; 上覆岩层垂直位移; 相似模拟; 垮落带; 断裂带

0 引言

随着综采工作面的不断推进,顶板悬露面积越来越大,上覆岩层产生弯曲变形[1-4],当弯曲变形超过一定程度时,上覆岩层发生位移甚至坍塌[5-6]。为了保证矿井安全生产,有必要对煤层开采过程中上覆岩层位移特征进行研究。文献[7]通过物理相似模拟得出了顶板岩层及黏土隔水层在开采影响下的位移、裂隙发展和开采范围的关系。文献[8]采用相似材料模拟的方法,研究了特厚煤层分层开采条件下断层受到的影响和覆岩移动发育规律。文献[9-10]对不同地质条件下来压规律和覆岩位移过程进行了研究,得出了煤层开采时上覆岩层的来压规律和“三带”位移分布。文献[11]采用相似模拟和现场监测方法,研究了大倾角煤层变角度综放工作面开采覆岩运移规律。文献[12-14]采用理论分析、相似模拟、数值模拟、现场观测等方法,研究了工作面尺寸、煤层倾角和开采厚度对覆岩位移的影响。本文以淮南谢桥矿1232(1)综采工作面为背景,利用相似模拟方法研究了煤层开采时工作面上覆岩层位移过程及特征,可为该煤层巷道支护提供参考依据。

1 工作面概况

淮南谢桥矿1232(1)综采工作面位于西翼C组采区11-2煤层西翼三阶段,地面标高+20.5~+29.5 m,工作面标高-540.6~-604.3 m,工作面倾斜长约154 m。煤层平均倾角为13°,密度为14 kg/m3,平均厚度为2.49 m。该工作面煤层顶板为砂质泥岩,平均厚度为3.32 m,呈灰色或深灰色;上覆承重岩层为较硬的细砂岩,平均厚度为6.24 m,呈灰色或浅灰色,泥质胶结;煤层底板为泥岩,平均厚度为2.35 m。

2 相似模拟实验设计

2.1 相似常数及材料配比

根据相似原理[15],并依据现场实际条件及实验情况,取相似常数:① 几何相似常数② 密度相似常数为模型密度,γp为原型密度);③ 应力相似常数④ 时间相似常数

根据谢桥矿煤层赋存情况,采用细砂、石膏、石灰作为相似材料的主要成分,通过不同配比来模拟坚硬、较硬和软弱岩层。根据式(1)计算各模拟岩层材料质量,相似材料配比见表1。

G=Lbhγp

(1)

式中:G为模拟岩层材料质量;L为模拟岩层长度;b为模拟岩层宽度;h为模拟岩层厚度。

2.2 实验模型

以谢桥矿地层资料为参考,厚度0.5 m及以上的岩层采用分层模拟,厚度小于0.5 m的岩层与邻近岩层合并综合模拟,按照岩层分层铺设相似材料,得到相似模拟实验模型,如图1所示。模型尺寸为420 cm×200 cm×25 cm(长×高×宽),模型架四周和后面采用钢板封闭并固定,模型架前面采用20 mm厚透明有机玻璃。为观察在煤层开采过程中覆岩移动变形规律,在模型表面布置位移监测点,如图2所示。

表1 相似材料配比

Table 1 Similar material ratio

岩层名称厚度/cm层数质量配比/kg细砂石灰石膏水砂质泥岩3.11143.984.401.104.95粉砂岩1.32118.561.8602.04泥岩11.342123.4912.35013.5813-2煤1.61114.021.753.501.93泥岩0.93113.201.3201.4513-1煤5.52248.066.0012.026.60粉砂岩6.25288.308.8309.72砂质泥岩4.77267.456.741.697.59细砂岩2.14133.133.861.663.86泥岩3.02142.874.2504.72粉砂岩11.263158.2815.83017.42细砂岩2.97145.985.362.305.36粉砂岩5.56278.187.8208.60泥岩7.652108.5910.85011.94砂质泥岩8.143115.1011.512.8812.94细砂层1.75127.093.161.353.16粉砂层2.44134.313.4303.77细砂岩8.643133.7415.604.4715.60泥岩2.90141.164.1204.5311-2煤2.50121.762.725.442.99泥岩2.90138.814.531.944.53细砂岩4.57270.748.253.548.25泥岩5.08272.107.2207.94

图1 相似模拟实验模型

Fig.1 Similar simulation experimental model

图2 位移监测点布置

Fig.2 Displacement monitoring points arrangement

2.3 实验过程

模型制作后干燥7 d左右,拆去模型前后挡板,后面留设2根保护槽钢,标注煤层及岩层位置和相应标高,并测定模型中岩层含水率,待岩层含水率与材料配比实验的含水率相同时进行开采,距边界110 m处掘进开切眼,留有0.5 m厚的顶煤,随后按4 m/h的速度向前推进。利用全站仪对各监测点坐标进行监测,通过对监测点原始坐标和开采过程中监测点坐标对比,得到各监测点的位移变化。

3 实验结果分析

工作面推进至距开切眼50 m时,直接顶出现初次来压,上覆岩层裂隙分布特征和垂直位移分别如图3、图4所示。从图3可看出,上覆岩层断裂并向下方采空区垮落,垮落带高度为10.5 m,垮落角为68°,垮落的岩层呈层状结构,无规则地堆积在采空区内,垮落岩层与上方岩层出现较大空隙,垮落岩石破碎充分,连通率较高,无断裂带出现。从图4可看出,开切眼后方40 m至工作面煤壁前方30 m范围内上覆岩层受采动影响;在开切眼后方和煤壁前方上覆岩层均表现为向上的垂直位移,这是由两端岩层向中间挤压造成的;采空区上覆岩层表现为向下的垂直位移,并在距开切眼前方水平距离20 m处垂直位移最大;随着距煤层距离的增大,上覆岩层垂直位移逐渐减小,在距煤层11.54 m时,上覆岩层垂直位移峰值为0.07 m。

图3 工作面推进至距开切眼50 m时上覆岩层裂隙分布特征

Fig.3 Distribution characteristics of overburden fractures when working face is advanced to 50 m away from cutting hole

图4 工作面推进至距开切眼50 m时上覆岩层垂直位移

Fig.4 Vertical displacement of overburden when working face is advanced to 50 m away from cutting hole

工作面推进至距开切眼100 m时,上覆岩层出现第5次周期来压,平均推进10~15 m周期来压1次,上覆岩层裂隙分布特征和垂直位移分别如图5、图6所示。从图5可看出,垮落带高度为13.45 m,垮落角为65°,导水裂隙带高度(即垮落带和断裂段高度之和)为37 m,垮落带和断裂带出现断层;垮落带岩石破碎较为充分,连通率较高;断裂带岩层出现少量向上发育的竖向破断裂隙和向两端发育的离层裂隙,裂隙向四周延伸,未能全部贯通。从图6可看出,开切眼后方40 m至工作面煤壁前方20 m范围内上覆岩层受采动影响;距开切眼前方水平距离40 m处上覆岩层垂直位移最大,向两端逐渐减小,垂直位移曲线基本上呈对称分布;随着距煤层距离的不断增大,上覆岩层垂直位移不断减小,在距煤层11.54 m时,上覆岩层垂直位移峰值达2.1 m。

图5 工作面推进至距开切眼100 m时上覆岩层裂隙分布特征

Fig.5 Distribution characteristics of overburden fractures when working face is advanced to 100 m away from cutting hole

图6 工作面推进至距开切眼100 m时上覆岩层垂直位移

Fig.6 Vertical displacement of overburden when working face is advanced to 100 m away from cutting hole

工作面推进至距开切眼160 m时,上覆岩层裂隙分布特征和垂直位移分别如图7、图8所示。从图7可看出,垮落带高度为17.5 m,垮落角为68°,断裂带高度为31.78 m,导水裂隙带高度为49.28 m;煤层开采波及到上方13煤层,原有上覆岩层结构全部失稳。从图8可看出,开切眼后方40 m至工作面煤壁前方40 m范围内上覆岩层受采动影响;距开切眼前方水平距离80 m处岩层垂直位移最大,向两端逐渐减小,垂直位移曲线基本上呈对称分布;随着距煤层距离的不断增大,上覆岩层垂直位移不断减小,在距煤层11.54 m时,上覆岩层垂直位移峰值达2.35 m。

图7 工作面推进至距开切眼160 m时上覆岩层裂隙分布特征

Fig.7 Distribution characteristics of overburden fractures when working face is advanced to 160 m away from cutting hole

图8 工作面推进至距开切眼160 m时上覆岩层垂直位移

Fig.8 Vertical displacement of overburden when working face is advanced to 160 m away from cutting hole

4 结论

(1) 随着综采工作面不断推进,垮落角基本保持不变,垮落带和断裂带高度逐渐增大,上覆岩层受采动影响不断增大。

(2) 上覆岩层垂直位移峰值基本位于采空区中部,向两端逐渐减小,垂直位移曲线基本上呈对称分布;随着综采工作面推进距离增大,垂直位移峰值不断增大;随着距煤层距离的增大,上覆岩层垂直位移不断减小。

参考文献(References):

[1] 李化敏,蒋东杰,李东印.特厚煤层大采高综放工作面矿压及顶板破断特征[J].煤炭学报,2014,39(10):1956-1960.

LI Huamin,JIANG Dongjie,LI Dongyin.Analysis of ground pressure and roof movement in fully-mechanized top coal caving with large mining height in ultra-thick seam[J].Journal of China Coal Society,2014,39(10):1956-1960.

[2] 许永祥,李化敏,王开林,等.特厚煤层综放工作面侧向支承压力分布研究[J].煤炭科学技术,2014,42(11):26-28.

XU Yongxiang,LI Huamin,WANG Kailin,et al.Study on lateral support pressure distribution of fully-mechanized coal mining face in ultra thick seam[J].Coal Science and Technology,2014,42(11):26-28.

[3] 熊祖强,王晓蕾.复合顶板综放面覆岩破坏及裂隙演化相似模拟试验[J].中国安全生产科学技术,2014,10(10):22-28.

XIONG Zuqiang,WANG Xiaolei.Similarity simulation test on overburden failure and cracks evolution under conditions of compound roof in full-mechanized top coal caving faces[J].Journal of Safety Science and Technology,2014,10(10):22-28.

[4] 孙闯,陈东旭,程耀辉,等.急倾斜煤层坚硬顶板塌落规律及控制研究[J].岩石力学与工程学报,2019,38(8):1647-1658.

SUN Chuang,CHEN Dongxu,CHENG Yaohui,et al.Study on collapse rule and control of hard roofs in steeply inclined coal seams[J].Chinese Journal of Rock Mechanics and Engineering,2019,38(8):1647-1658.

[5] 王志国,周宏伟,谢和平.深部开采上覆岩层采动裂隙网络演化的分形特征研究[J].岩土力学,2009,30(8):2403-2408.

WANG Zhiguo,ZHOU Hongwei,XIE Heping.Research on fractal characterization of mined crack network evolution in overburden rock stratum under deep mining[J].Rock and Soil Mechanics,2009,30(8):2403-2408.

[6] 崔树江.大采高超大采场覆岩破坏运动特征及控制研究[D].北京:中国矿业大学(北京),2016.

CUI Shujiang.Reseach on overlaying strata failure and moving character and controlling technology[D].Beijing:China University of Mining and Technology(Beijing),2016.

[7] 黄庆享,刘腾飞.浅埋煤层开采隔水层位移规律相似模拟研究[J].煤田地质与勘探,2006,34(5):34-37.

HUANG Qingxiang,LIU Tengfei.Simulating test on the subsidence law of subsurface water resisting layer upon shallow coalbed mining[J].Coal Geology & Exploration,2006,34(5):34-37.

[8] 孙学阳,刘亮东,李成,等.基于相似材料试验特厚煤层分层开采对断层影响研究[J].煤炭科学技术,2019,47(2):35-40.

SUN Xueyang,LIU Liangdong,LI Cheng,et al.Study on influence of layered mining of extra thick coal seam on faults based on similar materials test[J].Coal Science and Technology,2019,47(2):35-40.

[9] 肖江,吴建军,邵亚武,等.8.5 m大采高工作面矿压显现规律相似模拟研究[J].煤炭科学技术,2019,47(3):106-111.

XIAO Jiang,WU Jianjun,SHAO Yawu,et al.Similar simulation study on mine pressure behavior law of 8.5 m high mining face[J].Coal Science and Technology,2019,47(3):106-111.

[10] 王然.煤矿工作面采动覆岩裂隙演化规律研究[J].内蒙古煤炭经济,2018(10):44-45.

WANG Ran.Study on fracture evolution law of overlying strata in coal mining face[J].Inner Mongolia Coal Economy,2018(10):44-45.

[11] 高喜才,伍永平,曹沛沛,等.大倾角煤层变角度综放工作面开采覆岩运移规律[J].采矿与安全工程学报,2016,33(3):381-386.

GAO Xicai,WU Yongping,CAO Peipei,et al.Overlying strata movement property of fully mechanized caving angle-varied workface in steep dipping seam[J].Journal of Mining & Safety Engineering,2016,33(3):381-386.

[12] 郭文兵,娄高中.覆岩破坏充分采动程度定义及判别方法[J].煤炭学报,2019,44(3):755-766.

GUO Wenbing,LOU Gaozhong.Definition and distinguishing method of critical mining degree of overburden failure[J].Journal of China Coal Society,2019,44(3):755-766.

[13] 刘贵,张华兴,刘治国,等.河下综放开采覆岩破坏发育特征实测及模拟研究[J].煤炭学报,2013,38(6):987-993.

LIU Gui,ZHANG Huaxing,LIU Zhiguo,et al.Observation and simulation research on development features of overlying strata failure in conditions of fully-mechanized top-coal caving mining under river[J].Journal of China Coal Society,2013,38(6):987-993.

[14] 胡戈,李文平,程伟,等.淮南煤田综放开采导水裂隙带发育规律研究[J].煤炭工程,2008,40(5):74-76.

HU Ge,LI Wenping,CHENG Wei,et al.Study on the law of fractured full-mechanized cavingmining in Huainan Coal[J].Coal Engineering,2008,40(5):74-76.

[15] 张辉,朱术云,李秀晗,等.综放开采覆岩导水裂隙带高度研究[J].工矿自动化,2015,41(1):10-14.

ZHANG Hui,ZHU Shuyun,LI Xiuhan,et al.Research of height of water flowing fractured zone of overburden strata in fully-mechanized top-coal caving[J].Industry and Mine Automation,2015,41(1):10-14.

Similar simulation of overburden displacement characteristics of fully mechanized mining face

XU Xiaoben1,2, HU Zuxiang1,2, XING Lifen3, HAO Xue1,2

(1.Key Laboratory of Safety and High-efficiency Coal Mining of Ministry of Education, Anhui University of Science and Technology, Huainan 232001, China; 2.School of Energy and Safety, Anhui University of Science and Technology, Huainan 232001, China; 3.Shanxi Pingyao Xingsheng Coal Chemical Co., Ltd., Pingyao 031100, China)

Abstract:Taking 1232(1) fully-mechanized mining face of Xieqiao Mine of Huainan Mining Group as engineering background, overburden displacement characteristics during coal seam mining were studied by means of similar simulation experiment. The results show that with continuous advance of fully mechanized mining face, caving angle remains unchanged, caving zone and fault zone height increase gradually, and overburden are increasingly affected by mining. Peak value of overburden vertical displacement is located in the middle of goaf and decreases gradually at both ends. The overburden vertical displacement curve is symmetrical. With the increase of advancing distance of fully mechanized mining face, peak value of overburden vertical displacement increases continuously. With the increase of distance between overburden and coal seam, overburden vertical displacement decreases.

Key words:coal mining; fully mechanized mining face; roadway support; overburden displacement; similar simulation; caving zone; fault zone

中图分类号:TD325

文献标志码:A

文章编号1671-251X(2020)01-0085-05

DOI:10.13272/j.issn.1671-251x.2019080047

收稿日期:2019-08-16;修回日期:2020-01-06;责任编辑:盛男。

基金项目:安徽省自然科学基金资助项目(1808085ME159)。

作者简介:徐小奔(1996-),男,安徽安庆人,硕士研究生,主要研究方向为矿井瓦斯动力灾害防治,E-mail:1721953426@qq.com。

引用格式:徐小奔,胡祖祥,邢立奋,等.综采工作面上覆岩层位移特征相似模拟[J].工矿自动化,2020,46(1):85-89.

XU Xiaoben, HU Zuxiang, XING Lifen, et al. Similar simulation of overburden displacement characteristics of fully mechanized mining face[J].Industry and Mine Automation,2020,46(1):85-89.