Study on emissivity measurement of different types of coal and gangue using the matching method
-
摘要: 煤和矸石的种类、表面纹理结构、变质和发育程度等因素都会对其发射率产生较为显著影响,精准的发射率参数设置对红外仪测温及煤和矸石红外图像的识别至关重要。针对该问题,提出了一种基于匹配法的煤和矸石发射率测量方法,即采用表面热电偶与红外热像仪相结合的方式测量煤和矸石发射率。用密闭的电热炉对被测煤和矸石进行均匀加热,待被测煤和矸石均匀受热且稳定后,用表面热电偶对被测煤和矸石的选定区域进行真实温度测定(标定为T1),然后用红外热像仪对被测煤和矸石选定的同一区域进行温度测定(标定为T2),最后对红外热像仪的发射率进行调试,当T2=T1时,得出的发射率即为被测煤和矸石在该温度下的真实发射率。实验结果表明:① 等温条件下,煤和矸石表面越粗糙,其发射率数值越大,表明煤和矸石表面的粗糙度是制约两者产生不同发射率的内在因素。② 4种不同种类煤和矸石发射率随温度的增大呈幂函数降低,且拟合函数相关系数R2达0.98以上,验证了匹配法应用于煤和矸石发射率测量的可行性。③ 采用反代法得出在不同温度条件下实测值与理论值的误差率均小于3%,验证了实验中测量的煤和矸石发射率的准确性。Abstract: The type, surface texture, metamorphic degree, and developmental stage of coal and gangue significantly influence their emissivity. Accurate settings for emissivity parameters are essential for infrared temperature measurements and the identification of coal and gangue in infrared images. This study proposed a method for measuring the emissivity of coal and gangue based on the matching method. The approach integrated surface thermocouples with infrared thermography to assess emissivity. Samples were uniformly heated in a closed electric furnace, and once the temperature stabilized, a surface thermocouple measured the actual temperature of a selected area (denoted as T1). Concurrently, the infrared thermography system measured the temperature of the same area (denoted as T2). The emissivity of the infrared thermography system was calibrated until T2 equaled T1. At this point, the calculated emissivity reflected the true emissivity of the coal and gangue at that temperature. The experimental results indicated that: (1) Under isothermal conditions, greater surface roughness of coal and gangue correlated with higher emissivity values, suggesting that surface roughness is a fundamental factor restricting the emissivity of these materials. (2) The emissivity of four different types of coal and gangue decreased with increasing temperature, following a power function, with the fitting function's correlation coefficient (R2) exceeding 0.98, thereby confirming the feasibility of the matching method for measuring emissivity. (3) The inverse method revealed that the error rates between the measured and theoretical values under varying temperature conditions were all below 3%, validating the accuracy of the measured emissivity of coal and gangue.
-
表 1 无烟煤表面不同区域发射率
Table 1. Emissivity of different areas on anthracitel surface
检测区域 温度T/℃ 发射率均值 A 70 0.926 B 0.920 C 0.921 表 2 无烟煤的发射率
Table 2. Emissivity of anthracite
温度/℃ 实验/次 发射率均值 1 2 3 4 5 6 7 8 9 10 70 0.92 0.94 0.89 0.94 0.94 0.90 0.92 0.92 0.93 0.94 0.924 90 0.93 0.91 0.92 0.93 0.91 0.89 0.94 0.92 0.88 0.91 0.914 110 0.92 0.90 0.89 0.91 0.87 0.92 0.92 0.91 0.90 0.89 0.903 130 0.89 0.92 0.92 0.88 0.90 0.87 0.89 0.88 0.87 0.91 0.893 150 0.89 0.86 0.86 0.92 0.87 0.87 0.90 0.88 0.89 0.86 0.880 170 0.86 0.88 0.93 0.92 0.85 0.85 0.87 0.86 0.87 0.88 0.877 表 3 黑色砂岩的发射率
Table 3. Emissivity of black sandstone
温度/℃ 实验/次 发射率均值 1 2 3 4 5 6 7 8 9 10 70 0.96 0.95 0.95 0.93 0.98 0.95 0.97 0.93 0.93 0.95 0.950 90 0.96 0.96 0.95 0.94 0.94 0.95 0.97 0.94 0.95 0.94 0.950 110 0.97 0.96 0.93 0.94 0.94 0.94 0.95 0.93 0.96 0.94 0.946 130 0.94 0.93 0.95 0.93 0.93 0.91 0.96 0.95 0.95 0.96 0.941 150 0.95 0.92 0.94 0.94 0.94 0.93 0.91 0.96 0.95 0.93 0.937 170 0.91 0.89 0.92 0.93 0.93 0.95 0.95 0.94 0.93 0.94 0.929 表 4 不同温度下煤和矸石的发射率范围
Table 4. Emissivity range of different coal and gangue types at different temperatures
试样种类 温度范围/℃ 发射率 无烟煤 70~170 0.877~0.924 灰色砂岩 0.891~0.963 黑色砂岩 0.939~0.955 黑色页岩 0.844~0.910 白色砂岩 0.881~0.932 表 5 煤和矸石发射率的函数拟合结果
Table 5. Function fitting results of emissivity of different coal and gangue types
试样种类 拟合函数 参数选取 拟合优度/R2 a b c 无烟煤 $ \varepsilon (T) = a{T^b} $ 1.181 1 −0.062 1 —— 0.98 黑色砂岩 $ \varepsilon (T) = a + b{T^c} $ 0.952 2 −8.104 7−9 3.026 6 0.98 灰色砂岩 $ \varepsilon (T) = a{T^b} $ 1.304 1 −0.075 18 —— 0.98 白色砂岩 $ \varepsilon (T) = a{T^b} $ 1.204 7 −0.063 9 —— 0.99 黑色页岩 $ \varepsilon (T) = a + b{T^c} $ 0.914 3 −9.553 4−9 3.473 3 0.98 表 6 煤和矸石发射率实测值与基于拟合函数的理论计算值
Table 6. Measured value and theoretical calculation value of the fitting function
温度/℃ 无烟煤 黑色砂岩 灰色砂岩 白色砂岩 黑色页岩 实测值 理论值 实测值 理论值 实测值 理论值 实测值 理论值 实测值 理论值 170 0.877 0.859 0.929 0.915 0.891 0.886 0.881 0.868 0.844 0.830 150 0.880 0.865 0.937 0.927 0.902 0.895 0.888 0.875 0.870 0.860 130 0.893 0.873 0.941 0.936 0.915 0.904 0.899 0.883 0.887 0.881 110 0.903 0.882 0.946 0.942 0.920 0.916 0.906 0.892 0.896 0.896 90 0.914 0.893 0.950 0.947 0.940 0.930 0.920 0.904 0.910 0.905 70 0.924 0.907 0.950 0.950 0.963 0.948 0.932 0.918 0.910 0.910 表 7 室温条件下煤和矸石的发射率预测值
Table 7. Emissivity prediction value of different coal gangue types at ambient condition
温度/℃ 预测值/ε 无烟煤 白色砂岩 黑色砂岩 灰色砂岩 黑色页岩 25 0.967 0.981 0.952 1.000 0.914 表 8 基于反代法的不同温度下无烟煤发射率验证
Table 8. Error rate of anthracite emissivity at different temperatures
发射率 实测值T0/℃ 理论值Tr/℃ 误差率/% 0.924 70 71.86 2.657 0.914 90 90.89 2.700 0.903 110 110.92 2.743 0.893 130 130.94 2.771 0.880 150 150.96 2.800 0.877 170 170.99 2.843 表 9 基于反代法的不同温度下灰色砂岩发射率验证
Table 9. Error rate of gray sandstone emissivity at different temperatures
发射率 实测值T0/℃ 理论值Tr/℃ 误差率/% 0.963 70 71.43 2.042 0.94 90 90.62 2.314 0.92 110 110.70 2.429 0.915 130 130.82 2.600 0.902 150 150.91 2.729 0.891 170 170.96 2.800 -
[1] 国家统计局. 中华人民共和国2023年国民经济和社会发展统计公报[J]. 中国统计,2024(3):4-21.National Brueau of Statistics. Statistical communiqué on national economic and social development of people’s republic of China (PRC) in 2023[J]. China Statistics,2024(3):4-21. [2] 王家臣,刘云熹,李杨,等. 矿业系统工程60年发展与展望[J]. 煤炭学报,2024,49(1):261-279.WANG Jiachen,LIU Yunxi,LI Yang,et al. 60 years development and prospect of mining systems engineering[J]. Journal of China Coal Society,2024,49(1):261-279. [3] 金智新,闫志蕊,王宏伟,等. 新一代信息技术赋能煤矿装备数智化转型升级[J]. 工矿自动化,2023,49(6):19-31.JIN Zhixin,YAN Zhirui,WANG Hongwei,et al. The new generation of information technology empowers the digital and intelligent transformation and upgrading of coal mining equipment[J]. Journal of Mine Automation,2023,49(6):19-31. [4] 孙继平,程加敏. 煤矿智能化信息综合承载网[J]. 工矿自动化,2022,48(3):1-4,90.SUN Jiping,CHENG Jiamin. Coal mine intelligent information comprehensive carrier network[J]. Industry and Mine Automation,2022,48(3):1-4,90. [5] 王家臣,魏炜杰,张国英,等. 放煤规律与智能放煤[M]. 北京:科学出版社,2022.WANG Jiachen,WEI Weijie,ZHANG Guoying,et al. Top coal drawing mechanism and intelligent drawing[M]. Beijing:Science Press,2022. [6] 张锦旺,王家臣,何庚. 煤矸红外图像识别基础研究[M]. 北京:应急管理出版社,2024.ZHANG Jinwang,WANG Jiachen,HE Geng. Basic research on infrared image recognition of coal gangue[M]. Beijing:Emergency Management Press,2024. [7] 张锦旺,王家臣,何庚,等. 液体介入提升煤矸识别效率的试验研究[J]. 煤炭学报,2021,46(增刊2):681-691.ZHANG Jinwang,WANG Jiachen,HE Geng,et al. Experimental study on improving the identification efficiency of coal gangue by liquid intervention[J]. Journal of China Coal Society,2021,46(S2):681-691. [8] ZHANG Jinwang,HE Geng,YANG Shengli. Controlling water temperature for efficient coal/gangue recognition[J]. Materials Today Chemistry,2021,22. DOI: 10.1016/j.mtchem.2021.100587. [9] 张锦旺,何庚,王家臣. 不同混合度下液体介入难辨别煤矸红外图像识别准确率[J]. 煤炭学报,2022,47(3):1370-1381.ZHANG Jinwang,HE Geng,WANG Jiachen. Coal/gangue recognition accuracy based on infrared image with liquid intervention under different mixing degree[J]. Journal of China Coal Society,2022,47(3):1370-1381. [10] ZHANG Jinwang,ZHAO Jialin,HE Geng,et al. Effect of secondary intervention on recognition accuracy of coal and gangue with small gray difference[J]. Materials Today Chemistry,2022,26. DOI: 10.1016/j.mtchem.2022.101244. [11] ZHANG Jinwang,HAN Xing,CHENG Dongliang. Improving coal/gangue recognition efficiency based on liquid intervention with infrared imager at low emissivity[J]. Measurement,2022,189. DOI: 10.1016/J.MEASUREMENT.2021.110445. [12] 冯佳琪,陆道纲,张钰浩,等. 热辐射特征参数对快堆锥形顶盖空间换热特性影响的研究[J]. 核科学与工程,2024,44(1):55-62.FENG Jiaqi,LU Daogang,ZHANG Yuhao,et al. Study on the influence of thermal radiation characteristic parameters on roof slab space heat transfer behaviors in fast reactor[J]. Nuclear Science and Engineering,2024,44(1):55-62. [13] 王潇楠,李文军,李佳琪,等. 深度连续渐变式空腔阵列表面发射率研究[J]. 激光与红外,2018,48(11):1386-1390.WANG Xiaonan,LI Wenjun,LI Jiaqi,et al. Research on surface emissivity of depth continuous gradient cavity array[J]. Laser & Infrared,2018,48(11):1386-1390. [14] 邹锐婷,吴会军,刘彦辰,等. 地板表面发射率对地暖性能的影响[J]. 建筑热能通风空调,2021,40(9):14-18.ZOU Ruiting,WU Huijun,LIU Yanchen,et al. The influence of floor surface emissivity on performance of floor heating[J]. Building Energy & Environment,2021,40(9):14-18. [15] 刘占一,许婷,张魏静,等. 热防护材料表面发射率测试研究[J]. 火箭推进,2019,45(4):79-84,90.LIU Zhanyi,XU Ting,ZHANG Weijing,et al. Measurement study on surface emissivity of thermal protection material[J]. Journal of Rocket Propulsion,2019,45(4):79-84,90. [16] ERMIDA S L,HULLEY G,TRIGO I F. Introducing emissivity directionality to the temperature-emissivity separation algorithm[J]. Remote Sensing of Environment,2024,311. DOI: 10.1016/J.RSE.2024.114280. [17] CAGLE C,PANTOYA M. Fireball symmetry and its influence on perspective error from thermography data[J]. Measurement,2024,235 . DOI: 10.1016/j.measurement.2024.115020. [18] 时吉磊,陈廷彬,付少海,等. 低红外发射率控温热红外伪装材料的制备与性能[J]. 纺织学报,2024,45(6):32-38.SHI Jilei,CHEN Tingbin,FU Shaohai,et al. Preparation and properties of low infrared emissivity temperature-controlled thermal infrared camouflage materials[J]. Journal of Textile Research,2024,45(6):32-38. [19] 吴宇颂,田博宇,李辉,等. 半球向全发射率测量实验教学系统设计与开发[J]. 实验技术与管理,2024,41(1):165-170.WU Yusong,TIAN Boyu,LI Hui,et al. Design and development of an experimental teaching system for measuring hemispherical total emissivity[J]. Experimental Technology and Management,2024,41(1):165-170. [20] 沈久利,张玉存. 不同发射率下红外热图像的非稳态温度场测量研究[J]. 计量学报,2019,40(5):810-815.SHEN Jiuli,ZHANG Yucun. Study on non-steady temperature field measurement of infrared thermal image under different emissivity[J]. Acta Metrologica Sinica,2019,40(5):810-815. [21] 王俊虎,武鼎,郭帮杰,等. 一种新的适用于不同温度状态下岩石温度与发射率分离的平滑度函数[J]. 世界核地质科学,2023,40(4):1002-1008.WANG Junhu,WU Ding,GUO Bangjie,et al. A new smoothness function for temperature and emissivity separation of rocks at different temperature states[J]. World Nuclear Geoscience,2023,40(4):1002-1008. [22] 周维卫,传秀云,王时麒. 营口蛇纹石玉红外发射功能及其影响因素[J]. 矿物学报,2011,31(4):750-756.ZHOU Weiwei,CHUAN Xiuyun,WANG Shiqi. Infared emission function and its influencing factors of Yingkou Serpentine Jade[J]. Acta Mineralogica Sinica,2011,31(4):750-756. [23] 李文军,徐永达,郑永军. 红外热像仪与表面热电偶测量发射率的匹配法[J]. 中国测试,2017,43(6):12-15.LI Wenjun,XU Yongda,ZHENG Yongjun. Match method of emissivity measurement based on infrared thermal imager and surface thermometer[J]. China Measurement & Test,2017,43(6):12-15.