留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高应力断层构造区巷道冲击破坏特征研究

王飞 李明利 武轶凡 蔡东

王飞,李明利,武轶凡,等. 高应力断层构造区巷道冲击破坏特征研究[J]. 工矿自动化,2024,50(7):55-63.  doi: 10.13272/j.issn.1671-251x.2024050077
引用本文: 王飞,李明利,武轶凡,等. 高应力断层构造区巷道冲击破坏特征研究[J]. 工矿自动化,2024,50(7):55-63.  doi: 10.13272/j.issn.1671-251x.2024050077
WANG Fei, LI Mingli, WU Yifan, et al. Research on the features of impact damage in roadways in high stress fault structure areas[J]. Journal of Mine Automation,2024,50(7):55-63.  doi: 10.13272/j.issn.1671-251x.2024050077
Citation: WANG Fei, LI Mingli, WU Yifan, et al. Research on the features of impact damage in roadways in high stress fault structure areas[J]. Journal of Mine Automation,2024,50(7):55-63.  doi: 10.13272/j.issn.1671-251x.2024050077

高应力断层构造区巷道冲击破坏特征研究

doi: 10.13272/j.issn.1671-251x.2024050077
基金项目: 国家自然科学基金项目(52104081);河北省自然科学基金项目(E2022402031);河北省高等学校科学技术研究项目(BJK2023080)。
详细信息
    作者简介:

    王飞(1986—),男,内蒙古临河人,工程师,现从事煤矿智能化建设和机电管理方面的工作,E-mail:309195710@qq.com

  • 中图分类号: TD353

Research on the features of impact damage in roadways in high stress fault structure areas

  • 摘要: 断层构造区静动载应力耦合作用加剧了井下断层区围岩冲击危险性,断层构造区巷道围岩应力分布规律及冲击动载响应特征存在显著特殊性。目前对于断层构造区的冲击研究主要集中于工作面采场附近,但对于断层构造区巷道冲击破坏鲜有研究。以陕西某矿深埋高应力断层构造区巷道为工程背景,分析了断层构造区巷道围岩变形破坏力学特征:① 断层面存在明显应力阻隔效应,正断层附近存在上盘应力集中区和下盘应力降低区2个特殊应力区。巷道由于断层面影响,巷帮静载集中应力呈现非对称分布特征,远离断层面侧应力集中程度大于靠近断层面侧,该侧巷道围岩冲击破坏危险程度增大。② 断层面对于应力波传递产生明显阻隔作用,正断层上盘动载响应大于下盘动载响应,由于巷道两帮应力非对称分布特征,右帮动载响应明显大于左帮。基于上述特征,提出了断层构造区巷道围岩“卸(大直径钻孔卸压)−支(梯次加固成层式吸能防冲支护)”协同防冲控制技术,工程试验结果表明:① 巷道围岩采取“卸−支”协同防冲处理措施后,巷道两帮应力集中区往围岩深部转移3~5 m,应力峰值降低18.5%~20.3%,巷道帮部围岩应力集中程度显著降低。② 采用“卸−支”协同防冲处理措施前,巷道顶底板及两帮变形量分别为856,334,325,567 mm,巷道围岩变形破坏严重,采用“卸−支”协同防冲处理措施后,巷道围岩变形量降低35.69%~62.03%,巷道围岩稳定性增强。③ 钻孔煤粉量显著低于临界粉煤量,巷道围岩动力显现降低。

     

  • 图  1  401102回风巷平面布置

    Figure  1.  401102 return air roadway layout

    图  2  断层构造区巷道冲击破坏模型

    Figure  2.  Model of impact damage in roadway in fault structure areas

    图  3  数值计算模型

    Figure  3.  Numerical calculation model

    图  4  断层构造区垂直应力分布云图

    Figure  4.  Vertical stress distribution cloud map in fault structure areas

    图  5  巷道开挖垂直应力分布云图

    Figure  5.  Vertical stress distribution cloud map during roadway excavation

    图  6  断层构造区垂直应力分布曲线

    Figure  6.  Vertical stress distribution curve of fault structure areas

    图  7  巷道开挖垂直应力分布曲线

    Figure  7.  Vertical stress distribution curve during roadway excavation

    图  8  冲击动载作用下的巷道围岩振动速度云图(σd=30 MPa)

    Figure  8.  Cloud map of roadway surrounding rock vibration velocity under impact dynamic load(σd=30 MPa)

    图  9  不同冲击强度作用下巷道围岩质点振动速度曲线

    Figure  9.  Vibration velocity curves of roadway surrounding rock particles under different impact intensities

    图  10  大直径钻孔卸压原理

    Figure  10.  Principle of large diameter drilling for pressure relief

    图  11  梯次加固成层式吸能防冲支护原理

    Figure  11.  Principle of ladder reinforcement into layered energy absorption and anti impact support

    图  12  巷道补强支护方案

    Figure  12.  Strengthening support scheme for roadway

    图  13  巷道围岩应力变化特征

    Figure  13.  Stress variation curve of roadway surrounding rock

    图  14  巷道围岩位移变化量

    Figure  14.  Displacement variation of roadway surrounding rock

    图  15  巷道帮部煤粉量变化曲线

    Figure  15.  Variation curveS of coal powder quantity in the roadway side

    表  1  动载参数

    Table  1.   Dynamic load parameters

    序号 施加荷载/MPa 能量/J 波速/(m·s−1 最大峰值速度/(m·s−1
    1 10 103~104 4 850 0.88
    2 30 104~105 4 850 2.63
    3 60 105~106 4 850 5.26
    4 100 106~107 4 850 8.77
    下载: 导出CSV
  • [1] 何满潮,武毅艺,高玉兵,等. 深部采矿岩石力学进展[J]. 煤炭学报,2024,49(1):75-99.

    HE Manchao,WU Yiyi,GAO Yubing,et al. Research progress of rock mechanics in deep mining[J]. Journal of China Coal Society,2024,49(1):75-99.
    [2] 翟成,丛钰洲,陈爱坤,等. 中国煤矿瓦斯突出灾害治理的若干思考及展望[J]. 中国矿业大学学报,2023,52(6):1146-1161.

    ZHAI Cheng,CONG Yuzhou,CHEN Aikun,et al. Reflection and prospect on the prevention of gas outburst disasters in China's coal mines[J]. Journal of China University of Mining & Technology,2023,52(6):1146-1161.
    [3] 单仁亮,洪道余,仝潇,等. 九龙矿深部巷道管索组合结构支护技术研究[J]. 煤炭技术,2023,42(9):8-12.

    SHAN Renliang,HONG Daoyu,TONG Xiao,et al. Research on support technology of anchor cable with c-shaped tube in deep roadways of Jiulong Coal Mine[J]. Coal Technology,2023,42(9):8-12.
    [4] 蔡武,窦林名,王桂峰,等. 煤层采掘活动引起断层活化的力学机制及其诱冲机理[J]. 采矿与安全工程学报,2019,36(6):1193-1202.

    CAI Wu,DOU Linming,WANG Guifeng,et al. Mechanism of fault reactivation and its induced coal burst caused by coal mining activities[J]. Journal of Mining & Safety Engineering,2019,36(6):1193-1202.
    [5] 魏向志. 逆冲断层和巨厚砾岩耦合作用诱冲机制研究[J]. 煤炭工程,2019,51(9):106-111.

    WEI Xiangzhi. Analysis of rock burst mechanism induced by coupling effect of thrust fault and huge thick conglomerate[J]. Coal Engineering,2019,51(9):106-111.
    [6] 郭长升,王学滨,薛承宇,等. 正断层上盘开采断层附近应力时空分布数值模拟[J]. 煤炭科学技术,2023,51(3):61-67.

    GUO Changsheng,WANG Xuebin,XUE Chengyu,et al. Numerical simulation of spatiotemporal distributions of stresses in vicinity of normal fault due to mining within hanging wall[J]. Coal Science and Technology,2023,51(3):61-67.
    [7] 孟祥军,张广超,李友,等. 深厚表土覆岩结构运移演化及高应力突变致灾机理[J]. 煤炭学报,2023,48(5):1919-1931.

    MENG Xiangjun,ZHANG Guangchao,LI You,et al. Migration evolution laws of overburden structure with deep-lying thick surface soil and disaster mechanism induced by high stress mutation[J]. Journal of China Coal Society,2023,48(5):1919-1931.
    [8] 魏世明,王富莹,张泽升. 逆断层上下盘开采冲击危险性模拟及实验研究[J]. 煤炭工程,2022,54(11):124-130.

    WEI Shiming,WANG Fuying,ZHANG Zesheng. Modeling and experimental analysis of rockburst risk of mining in hanging wall or footwall of reverse fault[J]. Coal Engineering,2022,54(11):124-130.
    [9] 荣海,魏世龙,张宏伟,等. 井下断层活动的定量监测及其对冲击地压的影响研究[J]. 煤炭科学技术,2024,52(2):10-22. doi: 10.12438/cst.2023-1140

    RONG Hai,WEI Shilong,ZHANG Hongwei,et al. Research on quantitative monitoring of underground fault activity and its influence on rock burst[J]. Coal Science and Technology,2024,52(2):10-22. doi: 10.12438/cst.2023-1140
    [10] 王宏伟,田政,王晴,等. 采动诱发断层覆岩耦合失稳的突变效应[J]. 煤炭学报,2023,48(8):2961-2975.

    WANG Hongwei,TIAN Zheng,WANG Qing,et al. Investigation on the mutation effect induced by the coupled destabilization of fault and overburden rock strata during coal mining[J]. Journal of China Coal Society,2023,48(8):2961-2975.
    [11] 王志强,黄鑫,苏泽华,等. 临近断层工作面采动诱冲规律研究[J]. 中国安全生产科学技术,2021,17(5):67-72.

    WANG Zhiqiang,HUANG Xin,SU Zehua,et al. Research on laws of mining-induced rock burst in working face near fault[J]. Journal of Safety Science and Technology,2021,17(5):67-72.
    [12] 吴振华,潘鹏志,潘俊锋,等. 地堑构造区冲击地压发生机制及矿震活动规律[J]. 岩土力学,2021,42(8):2225-2238.

    WU Zhenhua,PAN Pengzhi,PAN Junfeng,et al. Analysis of mechanism of rock burst and law of mining induced events in graben structural area[J]. Rock and Soil Mechanics,2021,42(8):2225-2238.
    [13] 潘立友,李彩荣,陈理强. 断层夹持型不规则工作面冲击地压成因与防控[J]. 煤炭科学技术,2018,46(10):45-50.

    PAN Liyou,LI Cairong,CHEN Liqiang. Causes and prevention of rock burst from irregular face clamped with fault[J]. Coal Science and Technology,2018,46(10):45-50.
    [14] 王爱文,潘一山,李忠华,等. 断层作用下深部开采诱发冲击地压相似试验研究[J]. 岩土力学,2014,35(9):2486-2492.

    WANG Aiwen,PAN Yishan,LI Zhonghua,et al. Similar experimental study of rockburst induced by mining deep coal seam under fault action[J]. Rock and Soil Mechanics,2014,35(9):2486-2492.
    [15] 李振雷,窦林名,蔡武,等. 深部厚煤层断层煤柱型冲击矿压机制研究[J]. 岩石力学与工程学报,2013,32(2):333-342. doi: 10.3969/j.issn.1000-6915.2013.02.015

    LI Zhenlei,DOU Linming,CAI Wu,et al. Fault-pillar induced rock burst mechanism of thick coal seam in deep mining[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(2):333-342. doi: 10.3969/j.issn.1000-6915.2013.02.015
    [16] 王同旭,曹明辉,江东海. 采动影响下断层活化失稳及能量释放规律研究[J]. 煤炭科学技术,2022,50(7):75-83.

    WANG Tongxu,CAO Minghui,JIANG Donghai. Study on law of fault activation,failure and energy release under influence of mining[J]. Coal Science and Technology,2022,50(7):75-83.
    [17] 林远东,涂敏,付宝杰,等. 采动影响下断层稳定性的力学机理及其控制研究[J]. 煤炭科学技术,2019,47(9):158-165.

    LIN Yuandong,TU Min,FU Baojie,et al. Study on mechanics mechanism and control of fault stability under mining-induced influence[J]. Coal Science and Technology,2019,47(9):158-165.
    [18] 谭云亮,谭涛,张修峰,等. 正断层两盘动力灾害显现差异性及机制[J]. 煤炭科学技术,2023,51(1):214-223.

    TAN Yunliang,TAN Tao,ZHANG Xiufeng,et al. Difference and mechanism of dynamic behaviors between two walls of normal fault[J]. Coal Science and Technology,2023,51(1):214-223.
    [19] 谭云亮,张修峰,肖自义,等. 冲击地压主控因素及孕灾机制[J]. 煤炭学报,2024,49(1):367-379.

    TAN Yunliang,ZHANG Xiufeng,XIAO Ziyi,et al. Main control factors of rock burst and its disaster evolution mechanism[J]. Journal of China Coal Society,2024,49(1):367-379.
    [20] 谭彦,郭伟耀,王浩,等. 不同倾角断层滑移失稳机制试验研究[J]. 采矿与安全工程学报,2024,41(4):749-758.

    TAN Yan,GUO Weiyao,WANG Hao,et al. Experimental study on sliding instability mechanism of faults with different dip angles[J]. Journal of Mining & Safety Engineering,2024,41(4):749-758.
    [21] 张翔,朱斯陶,张修峰,等. 深厚表土综放采场断层煤柱整体失稳型冲击地压机制研究[J]. 岩石力学与工程学报,2024,43(3):713-727.

    ZHANG Xiang,ZHU Sitao,ZHANG Xiufeng,et al. Research on the mechanism of overall instability type rock burst of fault coal pillars in deep topsoil fully mechanized top coal caving mining area[J]. Chinese Journal of Rock Mechanics and Engineering,2024,43(3):713-727.
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  92
  • HTML全文浏览量:  36
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-27
  • 修回日期:  2024-07-26
  • 网络出版日期:  2024-08-01

目录

    /

    返回文章
    返回