留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤矿瓦斯抽采钻孔孔壁电阻率测量方法

李杰 雷志鹏 栗林波 任瑞斌 王飞宇 向学艺

李杰,雷志鹏,栗林波,等. 煤矿瓦斯抽采钻孔孔壁电阻率测量方法[J]. 工矿自动化,2022,48(5):32-38.  doi: 10.13272/j.issn.1671-251x.2022010025
引用本文: 李杰,雷志鹏,栗林波,等. 煤矿瓦斯抽采钻孔孔壁电阻率测量方法[J]. 工矿自动化,2022,48(5):32-38.  doi: 10.13272/j.issn.1671-251x.2022010025
LI Jie, LEI Zhipeng, LI Linbo, et al. Measurement method of borehole wall resistivity for coal mine gas extraction[J]. Journal of Mine Automation,2022,48(5):32-38.  doi: 10.13272/j.issn.1671-251x.2022010025
Citation: LI Jie, LEI Zhipeng, LI Linbo, et al. Measurement method of borehole wall resistivity for coal mine gas extraction[J]. Journal of Mine Automation,2022,48(5):32-38.  doi: 10.13272/j.issn.1671-251x.2022010025

煤矿瓦斯抽采钻孔孔壁电阻率测量方法

doi: 10.13272/j.issn.1671-251x.2022010025
基金项目: 山西省重点研发计划项目(202003D111008);山西省“1331”工程项目(晋教科〔2017〕10号)。
详细信息
    作者简介:

    李杰(1997—),男,山西平遥人,硕士,主要研究方向为矿用智能电器,E-mail:17835421804@163.com

    通讯作者:

    雷志鹏(1983—),男,山西太原人,副教授,博士,主要研究方向为矿用智能电器和电气绝缘性能评估,E-mail:leizhipeng@163.com

  • 中图分类号: TD712

Measurement method of borehole wall resistivity for coal mine gas extraction

  • 摘要: 针对煤矿瓦斯抽采用水平定向千米钻机钻孔孔壁状态检测问题,通过分析认为常用的伽马射线法、超声波法等测井技术难以应用于煤矿环境,因此设计了七电极径向电阻率测量方法,以测量瓦斯抽采钻孔孔壁电阻率,实现钻孔孔壁状态检测。介绍了七电极径向电阻率测量方法原理,推导了电阻率计算公式,分析了屏蔽电极间距、测量电极中心距、电极分布比3个参数对电阻率测量的影响。建立了三维仿真模型和二维轴对称仿真模型,研究了不同发射信号类型和电极分布参数下,测量电极周围电流的聚焦情况和电势分布,结果表明:直流和脉冲信号的穿透能力较弱,不能穿透孔壁,无法实现孔壁电阻率测量,而交流信号具有较好的穿透能力,可用于孔壁电阻率测量;电极分布比对电流聚焦效果有显著影响,当电极分布比为2.5~3时,发射电流聚焦效果较好,能取得较好的电阻率测量效果。根据上述结果确定了发射信号类型和电极分布参数,仿真分析了以空气、泥浆、岩层、煤层为介质时发射电流聚焦情况和电势分布,结果表明七电极电阻率测量方法对电极周围介质性质具有较强的分辨能力。根据仿真结果制作了实验电极,将电极安装在1节钻杆上,分别测量土壤、空气和煤碎粒的电阻率,所得测量值均在标准参考值范围内,验证了七电极径向电阻率测量方法能够实现钻孔孔壁电阻率测量,为煤矿瓦斯抽采用水平定向千米钻机钻孔孔壁状态检测提供了有效方法。

     

  • 图  1  七电极径向电阻率测量电极结构

    Figure  1.  Electrode structure of seven-electrodes lateral resistivity measurement

    图  2  均匀介质中发射电流分布

    Figure  2.  Emission current distribution in homogeneous substance

    图  3  七电极径向电阻率测量仿真模型

    Figure  3.  Simulation models of seven-electrodes lateral resistivity measurement

    图  4  不同发射信号下钻杆周围电势分布

    Figure  4.  Electric potential distribution around drill pipe under different excitation signals

    图  5  电极表面轴向电势分布

    Figure  5.  Axial electric potential distribution on electrode surface

    图  6  不同分布比时发射电流聚焦效果与电势分布

    Figure  6.  Excitation current gathering effect and electric potential distribution under different distribution ratio

    图  7  三维模型中发射电流聚焦效果

    Figure  7.  Excitation current gathering effect in 3D model

    图  8  不同介质中电流分布

    Figure  8.  Current distribution in different substances

    图  9  不同介质中电极表面轴向截线电势分布

    Figure  9.  Electric potential distribution on electrode surface in axial serif in different substances

    图  10  实物验证电路原理

    Figure  10.  Test circuit principle

    图  11  不同介质中电压波形实测结果

    Figure  11.  Voltage waveform measured in different substances

    表  1  七电极径向电阻率测量仿真模型中电极分布参数

    Table  1.   Electrode distribution parameters in simulation models of seven-electrodes lateral resistivity measurement

    S2.372.603.003.36
    L0/cm32374247
    L1/cm14141414
    下载: 导出CSV

    表  2  七电极径向电阻率测量仿真模型中被测介质参数

    Table  2.   Parameters of measured substance in simulation models of seven-electrodes lateral resistivity measurement

    参数空气泥浆煤岩岩层
    电阻率/(Ω·m)设置值
    正常值
    3×106
    104~106
    3.3
    3~3.5
    300
    30~103
    105
    10~103
    相对介电常数1164.54
    下载: 导出CSV

    表  3  电阻率实际测量结果

    Table  3.   measured results of resistivity

    参数土壤空气煤碎粒
    I/mA4.87×10−32.21×10−33.75×10−3
    Umean/V1.7160.2740.484
    ρ/(Ω·m)8.91×1043.132×104326.15
    ρ0/(Ω·m)4×104~105104~10630~103
    下载: 导出CSV
  • [1] 宁德义. 我国煤矿瓦斯防治技术的研究进展及发展方向[J]. 煤矿安全,2016,47(2):161-165.

    NING Deyi. Research progress and development direction of coal mine gas control technology in China[J]. Safety in Coal Mines,2016,47(2):161-165.
    [2] 石智军,姚克,田宏亮,等. 煤矿井下随钻测量定向钻进技术与装备现状及展望[J]. 煤炭科学技术,2019,47(5):22-28.

    SHI Zhijun,YAO Ke,TIAN Hongliang,et al. Current situation and prospect of directional drilling technology and equipment while drilling in coal mine[J]. Coal Science and Technology,2019,47(5):22-28.
    [3] 王国法,范京道,徐亚军,等. 煤炭智能化开采关键技术创新进展与展望[J]. 工矿自动化,2018,44(2):5-12.

    WANG Guofa,FAN Jingdao,XU Yajun,et al. Progress and prospect of key technology innovation in intelligent coal mining[J]. Industry and Mine Automation,2018,44(2):5-12.
    [4] 王清峰,陈航. 瓦斯抽采智能化钻探技术及装备的发展与展望[J]. 工矿自动化,2018,44(11):18-24.

    WANG Qingfeng,CHEN Hang. Development and prospect of intelligent drilling technology and equipment for gas extraction[J]. Industry and Mine Automation,2018,44(11):18-24.
    [5] 张海波,窦修荣,王志国,等. 国外随钻成像技术研究进展及展望[J]. 国外测井技术,2019,40(5):28-32.

    ZHANG Haibo,DOU Xiurong,WANG Zhiguo,et al. Research progress and prospect of foreign imaging while drilling technology[J]. World Well Logging Technology,2019,40(5):28-32.
    [6] 许玛丽. 国内外随钻测量技术现状与展望[J]. 化工管理,2019(17):109-110. doi: 10.3969/j.issn.1008-4800.2019.17.069

    XU Mali. Current situation and prospect of MWD technology at home and abroad[J]. Chemical Industry Management,2019(17):109-110. doi: 10.3969/j.issn.1008-4800.2019.17.069
    [7] 郑奕挺,方方,吴金平,等. 近钻头随钻伽马成像系统研制及应用[J]. 东北石油大学学报,2020,44(3):70-76,126. doi: 10.3969/j.issn.2095-4107.2020.03.007

    ZHENG Yiting,FANG Fang,WU Jinping,et al. Development and application of near-bit Gamma imaging system[J]. Journal of Northeast Petroleum University,2020,44(3):70-76,126. doi: 10.3969/j.issn.2095-4107.2020.03.007
    [8] 路保平,倪卫宁. 高精度随钻成像测井关键技术[J]. 石油钻探技术,2019,47(3):148-155. doi: 10.11911/syztjs.2019060

    LU Baoping,NI Weining. High precision imaging logging while drilling key technology[J]. Journal of Drilling Technology,2019,47(3):148-155. doi: 10.11911/syztjs.2019060
    [9] 王秀明. 随钻声波测井理论与方法研究[C]//全国检测声学会议论文集, 北京, 2014: 2.

    WANG Xiuming. Research on theory and method of acoustic logging while drilling[C]//Proceedings of National Conference on Acoustic Detection, Beijing, 2014: 2.
    [10] 唐宇. 新型随钻超声井径仪[J]. 测井技术,2015,39(5):580.

    TANG Yu. A new type of ultrasonic caliper while drilling[J]. Well Logging Technology,2015,39(5):580.
    [11] 倪卫宁,张晓彬,万勇,等. 随钻方位电磁波电阻率测井仪分段组合线圈系设计[J]. 石油钻探技术,2017,45(2):115-120.

    NI Weining,ZHANG Xiaobin,WAN Yong,et al. While drilling azimuth of electromagnetic wave resistivity logging tool piecewise combination coil system design[J]. Journal of Drilling Technology,2017,45(2):115-120.
    [12] 张鹏. 石油钻井工具的检测与应用[J]. 中国石油和化工标准与质量,2021,41(4):67-69. doi: 10.3969/j.issn.1673-4076.2021.04.024

    ZHANG Peng. Measurement of apparent resistivity of coal stratification with different coal structure types[J]. China Petroleum and Chemical Industry Standards and Quality,2021,41(4):67-69. doi: 10.3969/j.issn.1673-4076.2021.04.024
    [13] 王小龙,冯宏,李萍,等. 矿井电阻率超前探测正演模拟[J]. 煤炭科学技术,2011,39(11):112-117.

    WANG Xiaolong,FENG Hong,LI Ping,et al. Forward simulation of mine resistivity advance detection[J]. Coal Science and Technology,2011,39(11):112-117.
    [14] 许昭勇,宋大钊,王恩元,等. 含水量对煤岩电阻率特征的影响[J]. 工矿自动化,2015,41(8):72-76.

    XU Zhaoyong,SONG Dazhao,WANG Enyuan,et al. Effect of water content on resistivity characteristics of coal and rock[J]. Industry and Mine Automation,2015,41(8):72-76.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  77
  • HTML全文浏览量:  11
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-15
  • 修回日期:  2022-04-30
  • 网络出版日期:  2022-03-15

目录

    /

    返回文章
    返回