留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采煤机作业区域人员精确检测方法研究

魏东 王忠宾 司垒 谭超 路绪良

魏东, 王忠宾, 司垒, 等. 采煤机作业区域人员精确检测方法研究[J]. 工矿自动化, 2022, 48(2): 19-28. doi: 10.13272/j.issn.1671-251x.2021110069
引用本文: 魏东, 王忠宾, 司垒, 等. 采煤机作业区域人员精确检测方法研究[J]. 工矿自动化, 2022, 48(2): 19-28. doi: 10.13272/j.issn.1671-251x.2021110069
WEI Dong, WANG Zhongbin, SI Lei, et al. Research on precise detection method of personnel in shearer operation area[J]. Industry and Mine Automation, 2022, 48(2): 19-28. doi: 10.13272/j.issn.1671-251x.2021110069
Citation: WEI Dong, WANG Zhongbin, SI Lei, et al. Research on precise detection method of personnel in shearer operation area[J]. Industry and Mine Automation, 2022, 48(2): 19-28. doi: 10.13272/j.issn.1671-251x.2021110069

采煤机作业区域人员精确检测方法研究

doi: 10.13272/j.issn.1671-251x.2021110069
基金项目: 

国家重点研发计划资助项目(2020YFB1314200);国家自然科学基金青年基金资助项目(52074271);中国博士后科学基金特别资助项目(2020T130696)。

详细信息
    作者简介:

    魏东(1992-),男,辽宁阜新人,讲师,博士,研究方向为矿山装备智能化、煤矿人员安全保护,E-mail:weidongcmee@cumt.edu.cn。

  • 中图分类号: TD421

Research on precise detection method of personnel in shearer operation area

  • 摘要:

    当前智能化采煤机已具有三维定位、记忆截割和远程监控等功能,但缺少采煤机作业区域误入人员的检测和预警保护功能,人员精确检测是亟待解决的关键问题之一。受综采工作面低照度、工况环境复杂多变影响,基于激光、射频、超声波等传感器的煤矿机电装备主动防撞预警技术应用受限,基于可见光传感器的防撞技术难以满足准确性和稳定性要求。搭建了基于红外热成像技术的采煤机作业区域人员精确检测系统架构,进而提出了人员精确检测方法:针对综采工作面红外图像噪声的高强度、不均匀特点,采用基于高斯掩码改进的多级导向滤波模型有效滤除红外图像噪声,并保留边缘信息;基于Lucas-Kanade光流法提取动态背景下的移动前景目标运动信息;采用基于图像局部信息权重的直觉模糊C均值聚类算法对采煤机作业区域红外图像信息进行分割,获取移动目标位置信息;基于形态学加权投票法对移动目标运动信息提取结果和红外图像信息分割结果进行融合,实现采煤机作业区域人员精确检测。在耿村矿21208综采工作面进行井下工业性试验,结果表明采煤机作业区域人员精确检测方法对现场人员的跟踪偏差平均值为0.106 5像素,重叠比平均值为96.10%,平均单次处理时间为0.490 8 s,满足现场应用需求。

     

  • [1] 关于加快煤矿智能化发展的指导意见[N].中国煤炭报,2020-03-05(2).

    The guiding opinions on accelerating the development of intelligent coal mines[N].China Coal News, 2020-03-05(2).
    [2] 王国法,徐亚军,张金虎,等.煤矿智能化开采新进展[J].煤炭科学技术,2021,49(1):1-10.

    WANG Guofa,XU Yajun,ZHANG Jinhu,et al.New development of intelligent mining in coal mines[J].Coal Science and Technology,2021,49(1):1-10.
    [3] SCHIFFBAUER W H.Active proximity warning system for surface and underground mining applications[J].Mining Engineering,2002,54(12):40-48.
    [4] DU Jianxia.Design and implementation of underground locomotive collision avoidance system[J].Applied Mechanics & Materials,2015,741:744-748.
    [5] RUFF T M,HESSION-KUNZ D.Application of radio-frequency identification systems to collision avoidance in metal/nonmetal mines[J].IEEE Transactions on Industry Applications,2001,37(1):112-116.
    [6] HE Kai,MA Xianmin.Research on avoidance obstacle strategy of coal underground inspection robot based on binocular vision[C]//The 29th Chinese Control and Decision Conference,Chongqing,2017:6732-6737.
    [7] 方崇全.基于激光扫描雷达的矿井机车障碍物检测方法研究[J].煤矿机械,2018,39(8):32-34.

    FANG Chongquan.Research on obstacle detection method for mine locomotive based on lidar[J].Coal Mine Machinery,2018,39(8):32-34.
    [8] 周菲鑫.煤矿井下电机车无人驾驶测控系统研究[D].淮南:安徽理工大学,2019.

    ZHOU Feixin.Research on measurement and control system of unmanned electric locomotive in coal mine[D].Huainan:Anhui University of Science and Technology,2019.
    [9] 李占利,陈佳迎,李洪安,等.安全时间模型下的井下运动目标防撞预警方法[J].西安科技大学学报,2016,36(6):875-881.

    LI Zhanli,CHEN Jiaying,LI Hongan,et al.An anti-collision early-warning method of coal mine underground moving objects based on security time model[J].Journal of Xi'an University of Science and Technology,2016,36(6):875-881.
    [10] 王壬.基于机器视觉的井下机车防撞系统研究[D].重庆:重庆大学,2012.

    WANG Ren.Research on underground locomotive crashworthy system based on machine vision[D].Chongqing:Chongqing University,2012.
    [11] 杨娟.煤矿井下机车防撞系统设计[J].煤炭技术,2014,33(11):197-199.

    YANG Juan.Design on anti-collision system of coalmine underground tramcar[J].Coal Technology,2014,33(11):197-199.
    [12] 杨鑫.基于单目视觉的矿井电机车防撞预警系统的研究[D].徐州:中国矿业大学,2015. YANG Xin.Research on auti-collision warning system for the mine electric vehicle based on monocular vision[D]. Xuzhou:China University of Mining and Technology,2015.
    [13] GONG Lixiong,WANG Canlin.Research on moving target tracking based on FDRIG optical flow[J].Symmetry,2019,11(9):1122.
    [14] HE Kaiming,SUN Jian,TANG Xiaoou.Guided image filtering[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,2013,35(6):1397-1409.
    [15] LUCAS B,KANADE T.An iterative technique of image registration and its application to stereo[C]//The 7th International Joint Conference on Artificial Intelligence,Vancouver,1981:674-679.
    [16] FISCHLER M A,BOLLES R C.Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J].Reading in Computer Vision, 1987:726-740.
    [17] HARTLEY R I.In defense of the eight-point algorithm[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(6):580-593.
    [18] WEI Dong,WANG Zhongbin,SI Lei,et al.An image segmentation method based on a modified local-information weighted intuitionistic fuzzy C-means clustering and gold-panning algorithm[J].Engineering Applications of Artificial Intelligence,2021,101:104209.
    [19] VIEILLE N.Random walks and voting theory[J]. Mathematics of Operations Research,2004,29(1):106-113.
    [20] GONZALEZ R C,WOODS R E.Digital image processing [M]. The 4th edition.Upper Saddle Rivel:Pearson Prentice Hall,2017.
    [21] HORN B,SCHUNCK B.Determining optical flow[J]. Artificial Intelligence,1980,17(1/2/3):185-203.
    [22] FARNEBÄCK G.Two-frame motion estimation based on polynomial expansion[J].Image Analysis,2003,2749:363-370.
    [23] JIANG Daihong,DAI Lei,LI Dan,et al.Moving-object tracking algorithm based on PCA-SIFT and optimization for underground coal mines[J]. IEEE Access,2019(7):35556-35563.
  • 加载中
计量
  • 文章访问数:  156
  • HTML全文浏览量:  18
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-29
  • 修回日期:  2022-01-29
  • 网络出版日期:  2022-03-01
  • 刊出日期:  2022-03-01

目录

    /

    返回文章
    返回