Research on underground crawler detection robot and its motion anti-disturbance control
-
摘要: 井下履带式探测机器人作业环境复杂,需携带多种探测或救援装备并进行爬坡越障,易导致负载扰动,具有较强非线性和不确定性,此外,用于机器人动力驱动的永磁同步电动机(PMSM)本身是多变量、强耦合的非线性系统,目前常规的基于误差的比例积分微分(PID)控制器很难满足控制需求。针对上述问题,设计了一种四摆臂井下履带式探测机器人,并进行了爬坡越障性能分析,得出了平地直行和直行爬坡2种工况下机器人PMSM的转矩和转速;对PMSM进行建模分析,速度环采用自抗扰控制器(ADRC),电流环采用比例积分(PI)控制器,设计了ADRC+PI控制方案;采用磁场定向控制(FOC)技术对PMSM进行驱动,从而提升机器人在井下作业时的响应性能和抗干扰性能。对ADRC+PI控制方案和常规PI+PI控制方案进行仿真和对比分析,得到2种工况下PMSM的转速、转矩、相电流响应曲线,结果表明:在2种工况下,采用ADRC+PI控制方案时机器人PMSM的转速和转矩响应控制更精准,具有更小的超调量和更短的调节时间,应对外部突变干扰的能力更强,能有效提升井下履带式探测机器人的爬坡越障性能和作业稳定性。Abstract: The underground crawler detection robot has a complex working environment, and needs to carry a variety of detection or rescue equipment and climb obstacles, which easily leads to load disturbance and has strong nonlinearity and uncertainty. In addition, the permanent magnet synchronous motor (PMSM) system used for robot power drive is a multivariable and strong coupling nonlinear system, and the conventional proportional integral derivative(PID) controller based on error can not meet the control requirements. In order to solve the above problems, a four-arm underground crawler detection robot is designed, and the climbing performance is analyzed. The torque and rotational speed of robot PMSM are obtained under two working conditions of straight driving on flat ground and straight climbing. The PMSM is modeled and analyzed, the speed loop adopts the active disturbance rejection controller (ADRC), the current loop adopts proportion integration (PI) controller, and the ADRC+PI disturbance rejection control scheme is designed. The PMSM is driven by the field oriented control (FOC) technology, thereby improving the response performance and anti-disturbance performance of the robot when operating underground. The ADRC+PI control scheme and the conventional PI+PI control scheme are simulated and compared, and the speed, torque and phase current response curves of PMSM under two working conditions are obtained. The results show that under the two working conditions, when the ADRC+PI control scheme is used, the speed and torque response control of the robot PMSM is more accurate, with smaller overshoot and shorter adjustment time, and the PMSM has stronger capability to deal with external sudden disturbance. The scheme can improve the obstacle climbing performance and operation stability of the underground crawler detection robot effectively.
-
[1] 霍俊杰.矿山地质灾害勘查方法与防治对策[J].当代化工研究,2020(7):54-55.HUO Junjie.Exploration methods and prevention countermeasures of mine geological disasters[J].Modern Chemical Research,2020(7):54-55. [2] 邓双福.我国煤矿矿难应急处置协调联动机制优化研究[D].西安:西北大学,2019.DENG Shuangfu.Study on optimization of coordination linkage mechanism for emergency disposal of coal mine disasters in China[D].Xi'an:Northwest University,2019. [3] 王超群,黄钰琳.山东金矿事故企业迟报引发舆情[J].中国应急管理,2021(1):72-73.WANG Chaoqun,HUANG Yulin.The late report of a gold mining company that had an accident in Shandong caused public opinion[J].China Emergency Management,2021(1):72-73. [4] 丁恩杰,金雷,陈迪.互联网+感知矿山安全监控系统研究[J].煤炭科学技术,2017,45(1):129-134.DING Enjie,JIN Lei,CHEN Di.Study on safety monitoring and control system of Internet+perception mine[J].Coal Science and Technology,2017,45(1):129-134. [5] 谭章禄,单斐.近十年我国煤矿安全事故时空规律研究[J].中国煤炭,2017,43(9):102-107.TAN Zhanglu,SHAN Fei.Research on spatiotemporal regularity of coal mine safety accidents in China during last decade[J].China Coal,2017,43(9):102-107. [6] 裴祥喜.煤矿井下探测机器人远程控制系统[J].煤矿机械,2012,33(10):164-165.PEI Xiangxi.In underground coal mines detection remote control of system[J].Coal Mine Machinery,2012,33(10):164-165. [7] 吴德明.井下探测机器人的应用和设计[J].煤炭技术,2013,32(8):31-33.WU Deming.Detection of underground robot design and application[J].Coal Technology,2013,32(8):31-33. [8] 孙霖.携带机械臂的履带救援机器人设计与仿真实验研究[D].哈尔滨:哈尔滨工业大学,2020.SUN Lin.Design and simulation experiment research of tracked rescue robot with manipulator[D].Harbin:Harbin Institute of Technology,2020. [9] 宋锐,郑玉坤,刘义祥,等.煤矿井下仿生机器人技术应用与前景分析[J].煤炭学报,2020,45(6):2155-2169.SONG Rui,ZHENG Yukun,LIU Yixiang,et al.Analysis on the application and prospect of coal mine bionic robotics[J].Journal of China Coal Society,2020,45(6):2155-2169. [10] 葛世荣.煤矿机器人现状及发展方向[J].中国煤炭,2019,45(7):18-27.GE Shirong.Present situation and development direction of coal mine robots[J].China Coal,2019,45(7):18-27. [11] 陈清华,刘强,江雪,等.履带式巡检机器人底盘结构动力学仿真分析[J].机床与液压,2019,47(9):85-88.CHEN Qinghua,LIU Qiang,JIANG Xue,et al.Dynamic simulation analysis of crawler inspection robot chassis structure[J].Machine Tool & Hydraulics,2019,47(9):85-88. [12] 商德勇.薄煤层综采工作面巡检机器人运动分析及试验研究[D].北京:中国矿业大学(北京),2016. SHANG Deyong.Study on motion analysis and experiment of the inspection robot for fully-mechanized workface in thin coal seam[D].Beijing:China University of Mining & Technology(Beijing),2016. [13] 刘嘉,胡晋智.救灾机器人摆臂驱动系统及其平衡控制方法[J].工矿自动化,2017,43(7):42-47.LIU Jia,HU Jinzhi.Rescue robot swing arm driving system and its balance control method[J].Industry and Mine Automation,2017,43(7):42-47. [14] 王璐.煤矿井下探测机器人运动控制的研究[D].太原:太原理工大学,2011.WANG Lu.Research on motion control system of coal mine detection robot[D].Taiyuan:Taiyuan University of Technology,2011. [15] 杨忠炯,李坤霖,周立强.矿井环境探测机器人的越障能力分析[J].制造业自动化,2019,41(5):93-97.YANG Zhongjiong,LI Kunlin,ZHOU Liqiang.Analysis of the obstacle-surmounting ability of mine environment detection robot[J].Manufacturing Automation,2019,41(5):93-97. [16] 韩京清.自抗扰控制技术[J].前沿科学,2007(1):24-31.HAN Jingqing.Auto disturbances rejection control technique[J].Frontier Science,2007(1):24-31. [17] 韩京清.从PID技术到"自抗扰控制"技术[J].控制工程,2002,9(3):13-18.HAN Jingqing.From PID technique to active disturbances rejection control technique[J].Basic Automation,2002,9(3):13-18. [18] 张新荣,林莲,张东升,等.基于磁场定向控制理论的无刷直流电机控制[J].电机与控制应用,2019,46(11):25-29.ZHANG Xinrong,LIN Lian,ZHANG Dongsheng,et al.Brushless DC motor control based on field oriented control theory[J].Electric Machines & Control Application,2019,46(11):25-29. [19] 袁新娣,毛源军.基于电流滞环的永磁同步电机FOC研究与仿真[J].赣南师范大学学报,2019,40(6):62-65.YUAN Xindi,MAO Yuanjun.Research and simulation on FOC of PMSM based on current hysteresis[J].Journal of Gannan Normal University,2019,40(6):62-65.
点击查看大图
计量
- 文章访问数: 207
- HTML全文浏览量: 11
- PDF下载量: 24
- 被引次数: 0