留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤矿旋转机械健康指标构建及状态评估

李曼 潘楠楠 段雍 曹现刚

李曼,潘楠楠,段雍,等. 煤矿旋转机械健康指标构建及状态评估[J]. 工矿自动化,2022,48(9):33-41.  doi: 10.13272/j.issn.1671-251x.18004
引用本文: 李曼,潘楠楠,段雍,等. 煤矿旋转机械健康指标构建及状态评估[J]. 工矿自动化,2022,48(9):33-41.  doi: 10.13272/j.issn.1671-251x.18004
LI Man, PAN Nannan, DUAN Yong, et al. Construction of health index and condition assessment of coal mine rotating machinery[J]. Journal of Mine Automation,2022,48(9):33-41.  doi: 10.13272/j.issn.1671-251x.18004
Citation: LI Man, PAN Nannan, DUAN Yong, et al. Construction of health index and condition assessment of coal mine rotating machinery[J]. Journal of Mine Automation,2022,48(9):33-41.  doi: 10.13272/j.issn.1671-251x.18004

煤矿旋转机械健康指标构建及状态评估

doi: 10.13272/j.issn.1671-251x.18004
基金项目: 国家自然科学基金项目(51875451)。
详细信息
    作者简介:

    李曼(1964—),女,陕西西安人,教授,研究方向为矿山设备智能检测与控制,E-mail:liman10@sina.com

  • 中图分类号: TD67

Construction of health index and condition assessment of coal mine rotating machinery

  • 摘要: 煤矿设备监测参数为时间序列数据,其时序特征对健康评估的影响较大。针对传统机械设备健康评估中存在的信号时空特性提取不完备、人为经验依赖程度高、设备早期状态变化评估难等问题,建立了基于二维数组的长短期记忆降噪卷积自编码器(2D−LSTMDCAE)模型,并提出了基于2D−LSTMDCAE的煤矿旋转机械健康指标(HI)构建及状态评估方法。将一维振动数据转换为二维数组,通过二维卷积网络模型充分学习原始数据中所包含的信息,增强模型对数据特征的学习能力;将样本并行输入卷积和长短期记忆(LSTM)单元,以获取完备的信号时空特征;构建无监督学习的降噪卷积自编码器(DCAE)模型并进行样本重构,采用Bray−Curtis距离计算原始样本与重构样本间相似度,得到HI,解决设备运行过程中状态标签难以获取的问题,提升模型在强背景噪声中的适应能力。使用XJTU−SY轴承数据集验证2D−LSTMDCAE模型的特征学习能力,并采用相关性和单调性2个指标评价基于HI的状态评估方法,测试结果表明:二维输入样本构建方法及学习数据时序特征的HI构建方法对轴承的性能退化更敏感,2D−LSTMDCAE模型能够更早地检测到设备的早期故障,在测试轴承上相比于LSTMDCAE和DCAE模型构建的HI及均方根平均提前了约7 min;与LSTMDCAE和DCAE模型构建的HI、均方根相比,2D−LSTMDCAE模型构建的HI的相关性和单调性均较高,能更好地反映轴承的退化情况。采用减速器加速退化实验数据进行健康评估实验,在测试减速器上,相比于均方根指标,通过2D−LSTMDCAE模型构建的HI能够提前8 min发现早期故障,且HI相关性提高了0.007,单调性提高了0.211,能够更好地反映减速器的退化情况。

     

  • 图  1  LSTM循环单元结构

    Figure  1.  Structure of LSTM cyclic unit

    图  2  CAE模型

    Figure  2.  CAE model

    图  3  LSTMDCAE模型

    Figure  3.  LSTMDCAE model

    图  4  输入样本及HI构建

    Figure  4.  Construction of input sample and HI

    图  5  损失曲线

    Figure  5.  Loss curve

    图  6  测试轴承Bray-Curtis距离与HI曲线

    Figure  6.  Bray-Curtis distance and HI curves of test bearing

    图  7  各模型构建的HI对比

    Figure  7.  Comparison of HI constructed by each model

    图  8  HI的评价指标分析

    Figure  8.  Analysis of HI evaluation index

    图  9  模拟采煤机截割传动系统的减速器平台

    Figure  9.  Reducer platform simulating shearer cutting transmission system

    图  10  减速器垂直和水平方向原始振动信号

    Figure  10.  Vertical and horizontal original vibration signals of the reducer

    图  11  减速器HI对比

    Figure  11.  HI Comparison of the reducer

    表  1  各工况下轴承参数

    Table  1.   Bearing parameters under various working conditions

    工况轴承样本总数失效位置
    1轴承1_1123外圈
    轴承1_2161外圈
    轴承1_3158外圈
    2轴承2_1491内圈
    轴承2_2161外圈
    轴承2_3533保持架
    3轴承3_12 538外圈
    轴承3_22 496内圈、滚动体、保持架、外圈
    轴承3_3371内圈
    轴承3_41515内圈
    轴承3_5114外圈
    下载: 导出CSV

    表  2  HI的评价指标

    Table  2.   The evaluation index of HI

    HI相关性单调性
    2D−LSTMDCAE模型构建的HI0.82050.5790
    LSTMDCAE模型构建的HI0.80550.5068
    DCAE模型构建的HI0.78960.4948
    均方根0.77310.3067
    下载: 导出CSV

    表  3  3种深度学习模型构建的HI的评价指标

    Table  3.   Evaluation index of HI constructed by three deep learning models

    HI相关性单调性
    2D−LSTMDCAE模型构建的HI0.820 50.579 0
    1D−ADSCAE模型构建的HI0.709 20.256 0
    DRAE模型构建的HI0.795 20.490 3
    下载: 导出CSV

    表  4  减速器HI的评价指标

    Table  4.   HI evaluation index of the reducer

    HI相关性单调性
    2D−LSTMDCAE模型构建的HI0.821 20.346 4
    均方根0.814 60.135 1
    下载: 导出CSV
  • [1] 王国法,刘峰,庞义辉,等. 煤矿智能化−煤炭工业高质量发展的核心技术支撑[J]. 煤炭学报,2019,44(2):349-357. doi: 10.13225/j.cnki.jccs.2018.2041

    WANG Guofa,LIU Feng,PANG Yihui,et al. Coal mine intellectualization:the core technology of high quality development[J]. Journal of China Coal Society,2019,44(2):349-357. doi: 10.13225/j.cnki.jccs.2018.2041
    [2] 王国法,刘峰,孟祥军,等. 煤矿智能化(初级阶段)研究与实践[J]. 煤炭科学技术,2019,47(8):1-36. doi: 10.13199/j.cnki.cst.2019.08.001

    WANG Guofa,LIU Feng,MENG Xiangjun,et al. Research and practice on intelligent coal mine construction (primary stage)[J]. Coal Science and Technology,2019,47(8):1-36. doi: 10.13199/j.cnki.cst.2019.08.001
    [3] 李国发,王彦博,何佳龙,等. 机电装备健康状态评估研究进展及发展趋势[J]. 吉林大学学报(工学版),2022,52(2):267-279.

    LI Guofa,WANG Yanbo,HE Jialong,et al. Research progress and development trend of health assessment of electromechanical equipment[J]. Journal of Jilin University(Engineering and Technology Edition),2022,52(2):267-279.
    [4] 潘红光,裴嘉宝,侯媛彬. 智慧煤矿数据驱动检测技术研究[J]. 工矿自动化,2020,46(10):49-54. doi: 10.13272/j.issn.1671-251x.17606

    PAN Hongguang,PEI Jiabao,HOU Yuanbin. Research on data-driven detection technology of smart coal mine[J]. Industry and Mine Automation,2020,46(10):49-54. doi: 10.13272/j.issn.1671-251x.17606
    [5] 李杰其,胡良兵. 基于机器学习的设备预测性维护方法综述[J]. 计算机工程与应用,2020,56(21):11-19. doi: 10.3778/j.issn.1002-8331.2006-0016

    LI Jieqi,HU Liangbing. Review of machine learning for predictive maintenance[J]. Computer Engineering and Applications,2020,56(21):11-19. doi: 10.3778/j.issn.1002-8331.2006-0016
    [6] 来杰,王晓丹,向前,等. 自编码器及其应用综述[J]. 通信学报,2021,42(9):218-230. doi: 10.11959/j.issn.1000-436x.2021160

    LAI Jie,WANG Xiaodan,XIANG Qian,et al. Review on autoencoder and its application[J]. Journal on Communications,2021,42(9):218-230. doi: 10.11959/j.issn.1000-436x.2021160
    [7] HUANG Feng,LI Zhixiong,XIANG Shuchen,et al. A new wind power forecasting algorithm based on long short-term memory neural network[J]. International Transactions on Electrical Energy Systems,2021,31(12). DOI: 10.1002/2050-7038.13233.
    [8] JANA D,PATIL J,HERKAL S,et al. CNN and convolutional autoencoder (CAE) based real-time sensor fault detection,localization,and correction[J]. Mechanical Systems and Signal Processing,2022,169. DOI: 10.1016/j.ymssp.2021.108723.
    [9] 石延新,何进荣,李照奎,等. 3D卷积自编码器高光谱图像分类模型[J]. 中国图象图形学报,2021,26(8):2021-2036. doi: 10.11834/jig.210146

    SHI Yanxin,HE Jinrong,LI Zhaokui,et al. Hyperspectral image classification model based on 3D convolutional auto-encoder[J]. Journal of Image and Graphics,2021,26(8):2021-2036. doi: 10.11834/jig.210146
    [10] RICOTTA C,PAVOINE S. A new parametric measure of functional dissimilarity:bridging the gap between the Bray-Curtis dissimilarity and the Euclidean distance[J]. Ecological Modelling,2022,466. DOI: 10.1016/j.ecolmodel.2022.109880.
    [11] 赵志宏,李乐豪,杨绍普,等. 一种无监督的轴承健康指标及早期故障检测方法[J]. 中国机械工程,2022,33(10):1234-1243. doi: 10.3969/j.issn.1004-132X.2022.10.013

    ZHAO Zhihong,LI Lehao,YANG Shaopu,et al. An unsupervised bearing health indicator and early fault detection method[J]. China Mechanical Engineering,2022,33(10):1234-1243. doi: 10.3969/j.issn.1004-132X.2022.10.013
    [12] WANG Biao,LEI Yaguo,LI Naipeng,et al. A hybrid prognostics approach for estimating remaining useful life of rolling element bearings[J]. IEEE Transactions on Reliability,2020,69(1):401-412. doi: 10.1109/TR.2018.2882682
    [13] 雷亚国,韩天宇,王彪,等. XJTU−SY滚动轴承加速寿命试验数据集解读[J]. 机械工程学报,2019,55(16):1-6. doi: 10.3901/JME.2019.16.001

    LEI Yaguo,HAN Tianyu,WANG Biao,et al. XJTU-SY rolling element bearing accelerated life test datasets:a tutorial[J]. Journal of Mechanical Engineering,2019,55(16):1-6. doi: 10.3901/JME.2019.16.001
    [14] 张永峰,陆志强. 基于集成神经网络的剩余寿命预测[J]. 工程科学学报,2020,42(10):1372-1380.

    ZHANG Yongfeng,LU Zhiqiang. Remaining useful life prediction based on an integrated neural network[J]. Chinese Journal of Engineering,2020,42(10):1372-1380.
    [15] KHELIF R,CHEBEL-MORELLO B,MALINOWSKI S,et al. Direct remaining useful life estimation based on support vector regression[J]. IEEE Transactions on Industrial Electronics,2017,64(3):2276-2285. doi: 10.1109/TIE.2016.2623260
    [16] 徐海铭,夏乔阳,李勇,等. 基于深度可分离卷积神经网络轴承剩余寿命预测[J]. 机械强度,2022,44(4):763-771. doi: 10.16579/j.issn.1001.9669.2022.04.001

    XU Haiming,XIA Qiaoyang,LI Yong,et al. Bearing remaining life prediction based on deep separable convolutional neural network[J]. Journal of Mechanical Strength,2022,44(4):763-771. doi: 10.16579/j.issn.1001.9669.2022.04.001
    [17] 张小刚,丁华,王晓波,等. 深度残差网络在滚动轴承故障诊断中的研究[J]. 机械设计与制造,2022,371(1):77-80. doi: 10.3969/j.issn.1001-3997.2022.01.017

    ZHANG Xiaogang,DING Hua,WANG Xiaobo,et al. Study on fault diagnosis of rolling bearing by deep residual network[J]. Machinery Design & Manufacture,2022,371(1):77-80. doi: 10.3969/j.issn.1001-3997.2022.01.017
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  180
  • HTML全文浏览量:  28
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-24
  • 修回日期:  2022-09-02
  • 网络出版日期:  2022-09-15

目录

    /

    返回文章
    返回